Skip to main content

A Toolkit for Teasing Apart the Early Stages of Pollen–Stigma Interactions in Arabidopsis thaliana

  • Protocol
  • First Online:
Pollen and Pollen Tube Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2160))

Abstract

In hermaphroditic flowering plants, the female pistil serves as the main gatekeeper of mate acceptance as several mechanisms are present to prevent fertilization by unsuitable pollen. The characteristic Brassicaceae dry stigma at the top of pistil represents the first layer that requires pollen recognition to elicit appropriate physiological responses from the pistil. Successful pollen–stigma interactions then lead to pollen hydration, pollen germination, and pollen tube entry into the stigmatic surface. To assess these early stages in detail, our lab has used three experimental procedures to quantitatively and qualitatively characterize the outcome of compatible pollen–stigma interactions that would ultimately lead to the successful fertilization. These assays are also useful for assessing self-incompatible pollinations and mutations that affect these pathways. The model organism, Arabidopsis thaliana, offers an excellent platform for these investigations as loss-of-function or gain-of-function mutants can be easily generated using CRISPR/Cas9 technology, existing T-DNA insertion mutant collections, and heterologous expression constructs, respectively. Here, we provide a detailed description of the methods for these inexpensive assays that can be reliably used to assess pollen–stigma interactions and used to identify new players regulating these processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boavida LC, McCormick S (2007) Temperature as a determinant factor for increased and reproducible in vitro pollen germination in Arabidopsis thaliana. Plant J 52(3):570–582. https://doi.org/10.1111/j.1365-313X.2007.03248.x

    Article  CAS  Google Scholar 

  2. Palanivelu R, Preuss D (2006) Distinct short-range ovule signals attract or repel Arabidopsis thaliana pollen tubes in vitro. BMC Plant Biol 6:7. https://doi.org/10.1186/1471-2229-6-7

    Article  CAS  PubMed Central  Google Scholar 

  3. Cheung AY, Duan QH, Costa SS, De Graaf BHJ, Di Stilio VS, Feijo J, Wu HM (2008) The dynamic pollen tube cytoskeleton: live cell studies using actin-binding and microtubule-binding reporter proteins. Mol Plant 1(4):686–702. https://doi.org/10.1093/mp/ssn026

    Article  CAS  Google Scholar 

  4. Wang H, Jiang L (2011) Transient expression and analysis of fluorescent reporter proteins in plant pollen tubes. Nat Protoc 6(4):419–426. https://doi.org/10.1038/nprot.2011.309

    Article  CAS  Google Scholar 

  5. Chapman LA, Goring DR (2010) Pollen-pistil interactions regulating successful fertilization in the Brassicaceae. J Exp Bot 61(7):1987–1999. https://doi.org/10.1093/jxb/erq021

    Article  CAS  Google Scholar 

  6. Zheng Y-Y, Lin X-J, Liang H-M, Wang F-F, Chen L-Y (2018) The long journey of pollen tube in the pistil. Int J Mol Sci 19(11):pii:E3529. https://doi.org/10.3390/ijms19113529

    Article  CAS  Google Scholar 

  7. Mizuta Y, Higashiyama T (2018) Chemical signaling for pollen tube guidance at a glance. J Cell Sci 131(2):pii: jcs208447. https://doi.org/10.1242/jcs.208447

    Article  CAS  Google Scholar 

  8. Dickinson H (1995) Dry stigmas, water and self-incompatibility in Brassica. Sex Plant Reprod 8(1):1–10. https://doi.org/10.1007/BF00228756

    Article  Google Scholar 

  9. Doucet J, Lee HK, Goring DR (2016) Pollen acceptance or rejection: a tale of two pathways. Trends Plant Sci 21(12):1058–1067. https://doi.org/10.1016/j.tplants.2016.09.004

    Article  CAS  Google Scholar 

  10. Hiroi K, Sone M, Sakazono S, Osaka M, Masuko-Suzuki H, Matsuda T, Suzuki G, Suwabe K, Watanabe M (2013) Time-lapse imaging of self-and cross-pollinations in Brassica rapa. Ann Bot 112(1):115–122. https://doi.org/10.1093/aob/mct102

    Article  PubMed Central  Google Scholar 

  11. Ma J-F, Liu Z-H, Chu C-P, Hu Z-Y, Wang X-L, Zhang XS (2012) Different regulatory processes control pollen hydration and germination in Arabidopsis. Sex Plant Reprod 25(1):77–82. https://doi.org/10.1007/s00497-011-0173-0

    Article  CAS  Google Scholar 

  12. Zuberi MI, Dickinson HG (1985) Pollen-stigma interaction in Brassica. III Hydration of the pollen grains. J Cell Sci 76:321–336

    CAS  Google Scholar 

  13. Jany E, Nelles H, Goring DR (2019) The molecular and cellular regulation of Brassicaceae self-incompatibility and self-pollen rejection. Int Rev Cell Mol Biol 343:1–35. https://doi.org/10.1016/bs.ircmb.2018.05.011

    Article  Google Scholar 

  14. Elleman CJ, Dickinson HG (1986) Pollen-stigma interactions in Brassica. IV Structural reorganization in the pollen grains during hydration. J Cell Sci 80:141–157

    CAS  Google Scholar 

  15. Elleman CJ, Dickinson HG (1990) The role of the exine coating in pollen–stigma interactions in Brassica oleracea L. New Phytol 114(3):511–518. https://doi.org/10.1111/j.1469-8137.1990.tb00419.x

    Article  Google Scholar 

  16. Preuss D, Lemieux B, Yen G, Davis RW (1993) A conditional sterile mutation eliminates surface components from Arabidopsis pollen and disrupts cell signaling during fertilization. Genes Dev 7(6):974–985. https://doi.org/10.1101/gad.7.6.974

    Article  CAS  Google Scholar 

  17. Zinkl GM, Zwiebel BI, Grier DG, Preuss D (1999) Pollen-stigma adhesion in Arabidopsis: a species-specific interaction mediated by lipophilic molecules in the pollen exine. Development 126(23):5431–5440

    CAS  Google Scholar 

  18. Doughty J, Dixon S, Hiscock SJ, Willis AC, Parkin IA, Dickinson HG (1998) PCP-A1, a defensin-like Brassica pollen coat protein that binds the S locus glycoprotein, is the product of gametophytic gene expression. Plant Cell 10(8):1333–1347. https://doi.org/10.1105/tpc.10.8.1333

    Article  CAS  PubMed Central  Google Scholar 

  19. Luu DT, Heizmann P, Dumas C, Trick M, Cappadocia M (1997) Involvement of SLR1 genes in pollen adhesion to the stigmatic surface in Brassicaceae. Sex Plant Reprod 10(4):227–235. https://doi.org/10.1007/s004970050091

    Article  CAS  Google Scholar 

  20. Luu DT, Marty-Mazars D, Trick M, Dumas C, Heizmann P (1999) Pollen-stigma adhesion in Brassica spp involves SLG and SLR1 glycoproteins. Plant Cell 11(2):251–262. https://doi.org/10.1105/tpc.11.2.251

    Article  CAS  PubMed Central  Google Scholar 

  21. Takayama S, Shiba H, Iwano M, Asano K, Hara M, Che FS, Watanabe M, Hinata K, Isogai A (2000) Isolation and characterization of pollen coat proteins of Brassica campestris that interact with S locus-related glycoprotein 1 involved in pollen-stigma adhesion. Proc Natl Acad Sci U S A 97(7):3765–3770. https://doi.org/10.1073/pnas.040580797

    Article  CAS  PubMed Central  Google Scholar 

  22. Goring DR (2017) Exocyst, exosomes, and autophagy in the regulation of Brassicaceae pollen-stigma interactions. J Exp Bot 69(1):69–78. https://doi.org/10.1093/jxb/erx340

    Article  CAS  Google Scholar 

  23. Dickinson H, Elleman C, Doughty J (2000) Pollen coatings – chimaeric genetics and new functions. Sex Plant Reprod 12(5):302–309. https://doi.org/10.1007/s004970050199

    Article  Google Scholar 

  24. Elleman CJ, Dickinson HG (1994) Pollen-stigma interaction during sporophytic self-incompatibility in Brassica oleracea. In: Williams EG, Clarke AE, Knox RB (eds) Genetic control of self-incompatibility and reproductive development in flowering plants, vol 1. Advances in cellular and molecular biology of plants. Springer, Dordrecht

    Google Scholar 

  25. Elleman CJ, Dickinson HG (1996) Identification of pollen components regulating pollination-specific responses in the stigmatic papillae of Brassica oleracea. New Phytol 133(2):197–205. https://doi.org/10.1111/j.1469-8137.1996.tb01886.x

    Article  CAS  Google Scholar 

  26. Indriolo E, Safavian D, Goring DR (2014) The ARC1 E3 ligase promotes two different self-pollen avoidance traits in Arabidopsis. Plant Cell 26(4):1525–1543. https://doi.org/10.1105/tpc.114.122879

    Article  CAS  PubMed Central  Google Scholar 

  27. Iwano M, Shiba H, Matoba K, Miwa T, Funato M, Entani T, Nakayama P, Shimosato H, Takaoka A, Isogai A, Takayama S (2007) Actin dynamics in papilla cells of Brassica rapa during self- and cross-pollination. Plant Physiol 144(1):72–81. https://doi.org/10.1104/pp.106.095273

    Article  CAS  PubMed Central  Google Scholar 

  28. Safavian D, Goring DR (2013) Secretory activity is rapidly induced in stigmatic papillae by compatible pollen, but inhibited for self-incompatible pollen in the Brassicaceae. PLoS One 8(12):e84286. https://doi.org/10.1371/journal.pone.0084286

    Article  CAS  PubMed Central  Google Scholar 

  29. Safavian D, Zayed Y, Indriolo E, Chapman L, Ahmed A, Goring D (2015) RNA silencing of exocyst genes in the stigma impairs the acceptance of compatible pollen in Arabidopsis. Plant Physiol 169(4):2526–2538. https://doi.org/10.1104/pp.15.00635

    Article  CAS  PubMed Central  Google Scholar 

  30. Samuel MA, Chong YT, Haasen KE, Aldea-Brydges MG, Stone SL, Goring DR (2009) Cellular pathways regulating responses to compatible and self-incompatible pollen in Brassica and Arabidopsis stigmas intersect at Exo70A1, a putative component of the exocyst complex. Plant Cell 21(9):2655–2671. https://doi.org/10.1105/tpc.109.069740

    Article  CAS  PubMed Central  Google Scholar 

  31. Žárský V, Kulich I, Fendrych M, Pečenková T (2013) Exocyst complexes multiple functions in plant cells secretory pathways. Curr Opin Plant Biol 16(6):726–733. https://doi.org/10.1016/j.pbi.2013.10.013

    Article  CAS  Google Scholar 

  32. Swanson RJ, Hammond AT, Carlson AL, Gong H, Donovan TK (2016) Pollen performance traits reveal prezygotic nonrandom mating and interference competition in Arabidopsis thaliana. Am J Bot 103(3):498–513. https://doi.org/10.3732/ajb.1500172

    Article  CAS  Google Scholar 

  33. Wang LD, Clarke LA, Eason RJ, Parker CC, Qi BX, Scott RJ, Doughty J (2017) PCP-B class pollen coat proteins are key regulators of the hydration checkpoint in Arabidopsis thaliana pollen-stigma interactions. New Phytol 213(2):764–777. https://doi.org/10.1111/nph.14162

    Article  CAS  Google Scholar 

  34. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16(6):735–743. https://doi.org/10.1046/j.1365-313X.1998.00343.x

    Article  CAS  Google Scholar 

  35. Plackett ARG, Powers SJ, Phillips AL, Wilson ZA, Hedden P, Thomas SG (2018) The early inflorescence of Arabidopsis thaliana demonstrates positional effects in floral organ growth and meristem patterning. Plant Reprod 31(2):171–191. https://doi.org/10.1007/s00497-017-0320-3

    Article  CAS  Google Scholar 

  36. Safavian D, Jamshed M, Sankaranarayanan S, Indriolo E, Samuel MA, Goring DR (2014) High humidity partially rescues the Arabidopsis thaliana exo70A1 stigmatic defect for accepting compatible pollen. Plant Reprod 27(3):121–127. https://doi.org/10.1007/s00497-014-0245-z

    Article  CAS  Google Scholar 

  37. Kho YO, Baer J (1968) Observing pollen tubes by means of fluorescence. Euphytica 17(2):298–302

    Google Scholar 

  38. Mori T, Kuroiwa H, Higashiyama T, Kuroiwa T (2006) GENERATIVE CELL SPECIFIC 1 is essential for angiosperm fertilization. Nat Cell Biol 8(1):64–71. https://doi.org/10.1038/ncb1345

    Article  CAS  Google Scholar 

  39. Christensen CA, King EJ, Jordan JR, Drews GN (1997) Megagametogenesis in Arabidopsis wild type and the Gf mutant. Sex Plant Reprod 10(1):49–64. https://doi.org/10.1007/s004970050067

    Article  Google Scholar 

  40. Smyth DR, Bowman JL, Meyerowitz EM (2007) Early flower development in Arabidopsis. Plant Cell 2:755–767. https://doi.org/10.2307/3869174

    Article  Google Scholar 

Download references

Acknowledgement

We thank members of the Goring lab for critically reading this manuscript. H.K.L. was supported by an Ontario Graduate Scholarship, and research in DRG’s laboratory is supported by a Discovery Grant from the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daphne R. Goring .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lee, H.K., Macgregor, S., Goring, D.R. (2020). A Toolkit for Teasing Apart the Early Stages of Pollen–Stigma Interactions in Arabidopsis thaliana. In: Geitmann, A. (eds) Pollen and Pollen Tube Biology. Methods in Molecular Biology, vol 2160. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0672-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0672-8_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0671-1

  • Online ISBN: 978-1-0716-0672-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics