Skip to main content

Pollen Grain Counting Using a Cell Counter

  • Protocol
  • First Online:
Pollen and Pollen Tube Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2160))

Abstract

The number of pollen grains is a critical part of the reproductive strategies in plants and varies greatly between and within species. In agriculture, pollen viability is important for crop breeding. It is a laborious work to count pollen tubes using a counting chamber under a microscope. Here, we present a method of counting the number of pollen grains using a cell counter. In this method, the counting step is shortened to 3 min per flower, which, in our setting, is more than five times faster than the counting chamber method. This technique is applicable to species with a lower and higher number of pollen grains, as it can count particles in a wide range, from 0 to 20,000 particles, in one measurement. The cell counter also estimates the size of the particles together with the number. Because aborted pollen shows abnormal membrane characteristics and/or a distorted or smaller shape, a cell counter can quantify the number of normal and aborted pollen separately. We explain how to count the number of pollen grains and measure pollen size in Arabidopsis thaliana, Arabidopsis kamchatica, and wheat (Triticum aestivum).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shimizu KK, Tsuchimatsu T (2015) Evolution of selfing: recurrent patterns in molecular adaptation. Annu Rev Ecol Evol Syst 46:593–622

    Article  Google Scholar 

  2. Darwin C (1877) The different forms of flowers on plants of the same species. John Murray, London

    Book  Google Scholar 

  3. Sicard A, Lenhard M (2011) The selfing syndrome: a model for studying the genetic and evolutionary basis of morphological adaptation in plants. Ann Bot 107:1433–1443

    Article  PubMed  PubMed Central  Google Scholar 

  4. Oka H-I, Morishima H (1967) Variations in the breeding systems of a wild rice, Oryza perennis. Evolution 21:249–258

    Article  PubMed  Google Scholar 

  5. De Storme N, Geelen D (2014) The impact of environmental stress on male reproductive development in plants: biological processes and molecular mechanisms. Plant Cell Environ 37:1–18

    Article  CAS  PubMed  Google Scholar 

  6. Dolferus R, Ji X, Richards RA (2011) Abiotic stress and control of grain number in cereals. Plant Sci 181:331–341

    Article  CAS  PubMed  Google Scholar 

  7. Boeven PHG, Longin CFH, Leiser WL et al (2013) Genetic architecture of male floral traits required for hybrid wheat breeding. Theor Appl Genet 129:2343–2357

    Article  Google Scholar 

  8. Wright SI, Kalisz S, Slotte T (2013) Evolutionary consequences of self-fertilization in plants. Proc R Soc B 280:20130133

    Article  PubMed  PubMed Central  Google Scholar 

  9. Tsuchimatsu T, Kakui H, Yamazaki M et al (2020) Adaptive reduction of male gamete number in the selfing plant Arabidopsis thaliana. Nat Commun (provisionally accepted)

    Google Scholar 

  10. Willis JH (1999) The contribution of male-sterility mutations to inbreeding depression in Mimulus guttatus. Heredity 83:337–346

    Article  PubMed  Google Scholar 

  11. De Vries AP (1974) Some aspects of cross-pollination in wheat (Triticum aestivum L.). 3. Anther length and number of pollen grains per anther. Euphytica 23:11–19

    Article  Google Scholar 

  12. Ortega R, Aresti M, Pereira I (2011) Implementation and evaluation of an image analysis system for determining viability of pollen grains in temperate rice. Chil J Agr Res 71:16–22

    Article  Google Scholar 

  13. Costa CM, Yang S (2009) Counting pollen grains using readily available, free image processing and analysis software. Ann Bot 104:1005–1010

    Article  PubMed  PubMed Central  Google Scholar 

  14. OLS OMNI Life Science (2015) CASY TT cell counter & analyzer; operators guide. https://cellcounting.de/downloads/OLS_CASY_TT-OperatorsGuide_2015.pdf

  15. Heidmann I, Di Berardino M (2017) Impedance flow cytometry as a tool to analyze microspore and pollen quality. In: Schmidt A (ed) Plant germline development. Springer, New York, NY

    Google Scholar 

  16. Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682

    Article  CAS  PubMed  Google Scholar 

  17. R Core Team (2013) R foundation for statistical computing

    Google Scholar 

  18. Smyth DR, Bowman JL, Meyerowitz EM (1990) Early flower development in Arabidopsis. Plant Cell 2:755–767

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Yew C-L, Kakui H, Shimizu KK (2017) Agrobacterium-mediated floral dip transformation of the model polyploid species Arabidopsis kamchatica. J Plant Res 9:1–10

    Google Scholar 

  20. Browne RG, Iacuone S, Li SF et al (2018) Anther morphological development and stage determination in Triticum aestivum. Front Plant Sci 9:1–13

    Article  Google Scholar 

  21. Alexander MP (1969) Differential staining of aborted and nonaborted pollen. Stain Technol 44:117–122

    Article  CAS  PubMed  Google Scholar 

  22. Paape T, Briskine RV, Halstead-Nussloch G et al (2018) Patterns of polymorphism and selection in the subgenomes of the allopolyploid Arabidopsis kamchatica. Nat Commun 9:3909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Singla J, Lüthi L, Wicker T et al (2017) Characterization of Lr75: a partial, broad-spectrum leaf rust resistance gene in wheat. Theor Appl Genet 130:1–12

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Swiss National Science Foundation 31003A_182318, a JST CREST Grant Number JPMJCR16O3 and MEXT KAKENHI Grant Number 16H06469 to KKS, and a MEXT KAKENHI Grant Number 19K05976 to H.K. We thank Beat Keller for plant material and Reiko Akiyama and Toshiaki Tameshige for their valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kentaro K. Shimizu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kakui, H., Yamazaki, M., Hamaya, NB., Shimizu, K.K. (2020). Pollen Grain Counting Using a Cell Counter. In: Geitmann, A. (eds) Pollen and Pollen Tube Biology. Methods in Molecular Biology, vol 2160. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0672-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0672-8_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0671-1

  • Online ISBN: 978-1-0716-0672-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics