Skip to main content

Vertebrate Models to Investigate CCM Pathogenesis: The Zebrafish and Mouse Model

  • Protocol
  • First Online:
Cerebral Cavernous Malformations (CCM)

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2152))

  • 1222 Accesses

Abstract

The use of vertebrate models allows researchers to investigate mechanisms of CCM pathogenesis in vivo, to investigate discrepancies between observations seen in the lab with in vitro experiments and how they translate into animal models; these in vivo models are more relevant in terms of CCM pathogenesis seen in humans than the in vitro counterparts. The use of CCM-deficient Zebrafish model offers advantages given their optical clarity during embryogenesis, short generation time, and high fecundity. When looking at the in vivo mouse model, gene conservation among CCM1, CCM2, and CCM3 is much higher among mammals (>92%), offering higher relevance in terms of similarities between what is seen in a mouse compared to human CCM pathogenesis. With both models, deficiencies in CCM1, CCM2, and CCM3 demonstrate perturbed cardiovascular development and underlying mechanisms of CCM pathogenesis at multiple stages seen in humans. The optimized methods described in this chapter allow researchers to benefit from both in vivo models, investigating impacts of deficiencies in CCM gene expression and its effect on angiogenesis and other signaling cascades, offering a much wider view of the molecular and cellular mechanisms in CCM progression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dooley K, Zon LI (2000) Zebrafish: a model system for the study of human disease. Curr Opin Genet Dev 10(3):252–256. https://doi.org/10.1016/S0959-437X(00)00074-5

    Article  CAS  PubMed  Google Scholar 

  2. Chan AC, Li DY, Berg MJ, Whitehead KJ (2010) Recent insights into cerebral cavernous malformations: animal models of CCM and the human phenotype. FEBS J 277(5):1076–1083. https://doi.org/10.1111/j.1742-4658.2009.07536.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Yoruk B, Gillers BS, Chi NC, Scott IC (2012) Ccm3 functions in a manner distinct from Ccm1 and Ccm2 in a zebrafish model of CCM vascular disease. Dev Biol 362(2):121–131. https://doi.org/10.1016/j.ydbio.2011.12.006

    Article  CAS  PubMed  Google Scholar 

  4. Hogan BM, Bussmann J, Wolburg H, Schulte-Merker S (2008) ccm1 cell autonomously regulates endothelial cellular morphogenesis and vascular tubulogenesis in zebrafish. Hum Mol Gen 17(16):2424–2432. https://doi.org/10.1093/hmg/ddn142

    Article  CAS  PubMed  Google Scholar 

  5. Mably JD, Chuang LP, Serluca FC, Mohideen MA, Chen JN, Fishman MC (2006) Santa and valentine pattern concentric growth of cardiac myocardium in the zebrafish. Development 133(16):3139–3146. https://doi.org/10.1242/dev.02469

    Article  CAS  PubMed  Google Scholar 

  6. Zheng X, Xu C, Di Lorenzo A, Kleaveland B, Zou Z, Seiler C, Chen M, Cheng L, Xiao J, He J, Pack MA, Sessa WC, Kahn ML (2010) CCM3 signaling through sterile 20–like kinases plays an essential role during zebrafish cardiovascular development and cerebral cavernous malformations. J Clin Invest 120(8):2795–2804. https://doi.org/10.1172/JCI39679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Liu H, Rigamonti D, Badr A, Zhang J (2010) Ccm1 assures microvascular integrity during angiogenesis. Transl Stroke Res 1:146–153. https://doi.org/10.1007/s12975-010-0010-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Liu H, Rigamonti D, Badr A, Zhang J (2011) Ccm1 regulates microvascular morphogenesis during angiogenesis. J Vasc Res 48(2):130–140. https://doi.org/10.1159/000316851

    Article  CAS  PubMed  Google Scholar 

  9. Dietrich F, Lelkes PI (2006) Fine-tuning of a three-dimensional microcarrier-based angiogenesis assay for the analysis of endothelial-mesenchymal cell co-cultures in fibrin and collagen gels. Angiogenesis 9(3):111–125. https://doi.org/10.1007/s10456-006-9037-x

    Article  CAS  PubMed  Google Scholar 

  10. Nakatsu MN, Davis J, Hughes CC (2007) Optimized fibrin gel bead assay for the study of angiogenesis. J Vis Exp 3:186. https://doi.org/10.3791/186

    Article  Google Scholar 

  11. Sacharidou A, Koh W, Stratman AN, Mayo AM, Fisher KE, Davis GE (2010) Endothelial lumen signaling complexes control 3D matrix-specific tubulogenesis through interdependent Cdc42- and MT1-MMP-mediated events. Blood 115(25):5259–5269. https://doi.org/10.1182/blood-2009-11-252692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Thisse C, Thisse B (2008) High-resolution in situ hybridization to whole-mount zebrafish embryos. Nat Protoc 3(1):59–69. https://doi.org/10.1038/nprot.2007.514

    Article  CAS  PubMed  Google Scholar 

  13. Braissant O, Wahli W (1998) A simplified in situ hybridization protocol using non-radioactively labelled probes to detect abundant and rare mRNAs on tissue sections. Biochemica 1:10–16

    Google Scholar 

  14. van de Corput MPC, Dirks RW, van Gijlswijk RPM, van de Rijke FM, Raap AK (1998) Fluorescence in situ hybridization using horseradish peroxidase-labeled oligodeoxynucleotides and tyramide signal amplification for sensitive DNA and mRNA detection. Histochem Cell Biol 110(4):431–437. https://doi.org/10.1007/s004180050304

    Article  PubMed  Google Scholar 

  15. Welten MC, de Haan SB, van den Boogert N, Noordermeer JN, Lamers GE, Spaink HP, Meijer AH, Verbeek FJ (2006) ZebraFISH: fluorescent in situ hybridization protocol and three-dimensional imaging of gene expression patterns. Zebrafish 3(4):465–476. https://doi.org/10.1089/zeb.2006.3.465

    Article  CAS  PubMed  Google Scholar 

  16. Kleaveland B, Zheng X, Liu JJ, Blum Y, Tung JJ, Zou Z, Sweeney SM, Chen M, Guo L, Lu M-m, Zhou D, Kitajewski J, Affolter M, Ginsberg MH, Kahn ML (2009) Regulation of cardiovascular development and integrity by the heart of glass–cerebral cavernous malformation protein pathway. Nat Med 15:169. https://doi.org/10.1038/nm.1918. https://www.nature.com/articles/nm.1918#supplementary-information

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Plummer NW, Squire TL, Srinivasan S, Huang E, Zawistowski JS, Matsunami H, Hale LP, Marchuk DA (2006) Neuronal expression of the Ccm2 gene in a new mouse model of cerebral cavernous malformations. Mamm Genome 17(2):119–128. https://doi.org/10.1007/s00335-005-0098-8

    Article  CAS  PubMed  Google Scholar 

  18. Whitehead KJ, Chan AC, Navankasattusas S, Koh W, London NR, Ling J, Mayo AH, Drakos SG, Jones CA, Zhu W, Marchuk DA, Davis GE, Li DY (2009) The cerebral cavernous malformation signaling pathway promotes vascular integrity via rho GTPases. Nat Med 15:177. https://doi.org/10.1038/nm.1911. https://www.nature.com/articles/nm.1911#supplementary-information

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Boulday G, Blecon A, Petit N, Chareyre F, Garcia LA, Niwa-Kawakita M, Giovannini M, Tournier-Lasserve E (2009) Tissue-specific conditional CCM2 knockout mice establish the essential role of endothelial CCM2 in angiogenesis: implications for human cerebral cavernous malformations. Dis Model Mech 2(3–4):168–177. https://doi.org/10.1242/dmm.001263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. McDonald DA, Shenkar R, Shi C, Stockton RA, Akers AL, Kucherlapati MH, Kucherlapati R, Brainer J, Ginsberg MH, Awad IA, Marchuk DA (2011) A novel mouse model of cerebral cavernous malformations based on the two-hit mutation hypothesis recapitulates the human disease. Hum Mol Genet 20(2):211–222. https://doi.org/10.1093/hmg/ddq433

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Abou-Fadel, J., Zhang, J. (2020). Vertebrate Models to Investigate CCM Pathogenesis: The Zebrafish and Mouse Model. In: Trabalzini, L., Finetti, F., Retta, S. (eds) Cerebral Cavernous Malformations (CCM) . Methods in Molecular Biology, vol 2152. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0640-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0640-7_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0639-1

  • Online ISBN: 978-1-0716-0640-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics