Skip to main content

Live-Cell Single-Molecule Imaging with Optogenetics Reveals Dynamics of a Neuronal Activity-Dependent Transcription Factor

  • Protocol
  • First Online:
Single Molecule Microscopy in Neurobiology

Part of the book series: Neuromethods ((NM,volume 154))

  • 632 Accesses

Abstract

Powerful imaging techniques have been developed to investigate the spatiotemporal dynamics of molecular players that are involved in various biological functions. A fine-tuned single-molecule imaging technique allows us to study the movement of transcription factors in the cell nucleus. Our technique combined with optogenetics enables us to reveal neuronal activity-dependent dynamics of transcription factors in living cortical neurons. Here, we describe the detailed experimental procedures to study the transcriptional activity with physiological stimulation in living CNS neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hager GL, Mcnally JG, Misteli T (2009) Transcription dynamics. Mol Cell 35:741–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ptashne M, Gann A (1997) Transcriptional activation by recruitment. Nature 386:569–577

    Article  CAS  PubMed  Google Scholar 

  3. Bentovim L, Harden TT, DePace AH (2017) Transcriptional precision and accuracy in development: from measurements to models and mechanisms. Development 144:3855–3866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hampsey M (1998) Molecular genetics of the RNA polymerase II general transcriptional machinery. Microbiol Mol Biol Rev 62:465–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Spitz F, Furlong EEM (2012) Transcription factors: from enhancer binding to developmental control. Nat Rev Genet 13:613–626

    Article  CAS  PubMed  Google Scholar 

  6. Impey S, McCorkle SR, Cha-Molstad H et al (2004) Defining the CREB regulation: a genome-wide analysis of transcription factor regulatory regions. Cell 119:1041–1054

    CAS  PubMed  Google Scholar 

  7. Flavell SW, Cowan CW, Kim T et al (2006) Activity-dependent regulation of MEF2 transcription factors suppresses excitatory synapse number. Science 311:1008–1012

    Article  CAS  PubMed  Google Scholar 

  8. Zhou Z, Hong EJ, Cohen S et al (2006) Brain-specific phosphorylation of MeCP2 regulates activity-dependent Bdnf transcription, dendritic growth, and spine maturation. Neuron 52:255–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lin Y, Bloodgood BL, Hauser JL et al (2008) Activity-dependent regulation of inhibitory synapse development by Npas4. Nature 455:1198–1204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Riggs AD, Bourgeois S, Cohn M (1970) The lac repressor-operator interaction. III. Kinetic studies. J Mol Biol 53:401–417

    Article  CAS  PubMed  Google Scholar 

  11. Kim JG, Matthews BW, Anderson WF (1987) Kinetic studies on Cro repressor-operator DNA interaction. J Mol Biol 196:149–158

    Article  CAS  PubMed  Google Scholar 

  12. Mayr BM, Guzman E, Montminy M (2005) Glutamine rich and basic region/leucine zipper (bZIP) domains stabilize cAMP-response element-binding protein (CREB) binding to chromatin. J Biol Chem 280:15103–15110

    Article  CAS  PubMed  Google Scholar 

  13. Michelman-ribeiro A, Mazza D, Rosales T et al (2009) Direct measurement of association and dissociation rates of DNA binding in live cells by fluorescence correlation spectroscopy. Biophys J 97:337–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Xia T, Li N, Fang X (2013) Single-molecule fluorescence imaging in living cells. Annu Rev Phys Chem 64:459–480

    Article  CAS  PubMed  Google Scholar 

  15. Liu Z, Lavis LD, Betzig E (2015) Imaging live-cell dynamics and structure at the single-molecule level. Mol Cell 58:644–659

    Article  CAS  PubMed  Google Scholar 

  16. Shao S, Xue B, Sun Y (2018) Intranucleus single-molecule imaging in living cells. Biophys J 115:181–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ishijima A, Yanagida T (2001) Single molecule nanobioscience. Trends Biochem Sci 26:438–444

    Article  CAS  PubMed  Google Scholar 

  18. Funatsu T, Harada Y, Tokunaga M et al (1995) Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution. Nature 374:555–559

    Article  CAS  PubMed  Google Scholar 

  19. Ulbrich MH, Isacoff EY (2007) Subunit counting in membrane-bound proteins. Nat Methods 4:319–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sako Y, Minoghchi S, Yanagida T (2000) Single-molecule imaging of EGFR signalling on the surface of living cells. Nat Cell Biol 2:168–172

    Article  CAS  PubMed  Google Scholar 

  21. Zhang W, Jiang Y, Wang Q et al (2009) Single-molecule imaging reveals transforming growth factor-beta-induced type II receptor dimerization. Proc Natl Acad Sci U S A 106:15679–15683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Iino R, Koyama I, Kusumi A (2001) Single molecule imaging of green fluorescent proteins in living cells: E-cadherin forms oligomers on the free cell surface. Biophys J 80:2667–2677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tokunaga M, Imamoto N, Sakata-sogawa K (2008) Highly inclined thin illumination enables clear single-molecule imaging in cells. Nat Methods 5:159–161

    Article  CAS  PubMed  Google Scholar 

  24. Paakinaho V, Presman DM, Ball DA et al (2017) Single-molecule analysis of steroid receptor and cofactor action in living cells. Nat Commun 8:1–14

    Article  CAS  Google Scholar 

  25. Sugo N, Morimatsu M, Arai Y et al (2015) Single-molecule imaging reveals dynamics of CREB transcription factor bound to its target sequence. Sci Rep 5:1–9

    Article  CAS  Google Scholar 

  26. Kitagawa H, Sugo N, Morimatsu M et al (2017) Activity-dependent dynamics of the transcription factor of cAMP-response element binding protein in cortical neurons revealed by single-molecule imaging. J Neurosci 37:1–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dwarki VJ, Montminy M, Verma IM (1990) Both the basic region and the “leucine zipper” domain of the cyclic AMP response element binding (CREB) protein are essential for transcriptional activation. EMBO J 9:225–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Walton KM, Lochner JE, Rehfuss RP et al (1992) A dominant repressor of cyclic adenosine 3′,5′-monophosphate (cAMP)-regulated enhancer-binding protein activity inhibits the cAMP-mediated induction of the somatostatin promoter in vivo. Mol Endocrinol 6:647–655

    CAS  PubMed  Google Scholar 

  29. Gloster A, Wu W, Speelman A et al (1994) The Td function at-tubulin promoter specifies gene expression as a of neuronal growth and regeneration in transgenic mice. J Neurosci 14:7319–7330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang S, Wu H, Jiang J et al (1998) Isolation of neuronal precursors by sorting embryonic forebrain transfected with GFP regulated by the Tα1 tubulin promoter. Nat Biotechnol 16:196–201

    Article  CAS  PubMed  Google Scholar 

  31. Hatanaka Y, Murakami F (2002) In vitro analysis of the origin, migratory behavior, and maturation of cortical pyramidal cells. J Comp Neurol 454:1–14

    Article  PubMed  Google Scholar 

  32. Boyden ES, Zhang F, Bamberg E et al (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8:1263–1268

    Article  CAS  PubMed  Google Scholar 

  33. Lin JY (2010) A user’s guide to channelrhodopsin variants: features, limitations and future developments. Exp Physiol 96:19–25

    Article  PubMed  PubMed Central  Google Scholar 

  34. Nagel G, Brauner M, Liewald JF et al (2005) Light activation of channelrhodopsin-2 in excitable cells of Caenorhabditis elegans triggers rapid behavioral responses. Curr Biol 15:2279–2284

    Article  CAS  PubMed  Google Scholar 

  35. Malyshevskaya O, Shiraishi Y, Kimura F, Yamamoto N (2013) Role of electrical activity in horizontal axon growth in the developing cortex: a time-lapse study using optogenetic stimulation. PLoS One 8:e82954

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Morisaki T, Müller WG, Golob N et al (2014) Single-molecule analysis of transcription factor binding at transcription sites in live cells. Nat Commun 5:4456

    Article  CAS  PubMed  Google Scholar 

  37. Bading H, Ginty DD, Greenberg ME (1993) Regulation of gene expression in hippocampal neurons by distinct calcium signaling pathways. Science 260:181–186

    Article  CAS  PubMed  Google Scholar 

  38. Sugo N, Oshiro H, Takemura M et al (2010) Nucleocytoplasmic translocation of HDAC9 regulates gene expression and dendritic growth in developing cortical neurons. Eur J Neurosci 31:1521–1532

    PubMed  Google Scholar 

  39. Uesaka N, Hirai S, Maruyama T et al (2005) Activity dependence of cortical axon branch formation: a morphological and electrophysiological study using organotypic slice cultures. J Neurosci 25:1–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hihara S, Pack CG, Kaizu K et al (2012) Local nucleosome dynamics facilitate chromatin accessibility in living mammalian cells. Cell Rep 2:1645–1656

    Article  CAS  PubMed  Google Scholar 

  41. Nozaki T, Imai R, Tanbo M et al (2017) Dynamic organization of chromatin domains revealed by super-resolution live-cell imaging. Mol Cell 67:282–293

    Article  CAS  PubMed  Google Scholar 

  42. Zhen CY, Tatavosian R, Huynh TN et al (2016) Live-cell single-molecule tracking reveals co-recognition of H3K27me3 and DNA targets polycomb Cbx7-PRC1 to chromatin. Elife 5:e17667

    Article  PubMed  PubMed Central  Google Scholar 

  43. Yang G, Liu C, Chen S-H et al (2018) Super-resolution imaging identifies PARP1 and the Ku complex acting as DNA double-strand break sensors. Nucleic Acids Res 46:3446–3457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Martin RM, Rino J, Carvalho C et al (2013) Live-cell visualization of pre-mRNA splicing with single-molecule sensitivity. Cell Rep 4:1144–1155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gebhardt JCM, Suter DM, Roy R et al (2013) Single-molecule imaging of transcription factor binding to DNA in live mammalian cells. Nat Methods 10:421–426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chen J, Zhang Z, Li L et al (2014) Single-molecule dynamics of enhanceosome assembly in embryonic stem cells. Cell 156:1274–1285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Groeneweg FL, Van Royen ME, Fenz S et al (2014) Quantitation of glucocorticoid receptor DNA-binding dynamics by single-molecule microscopy and FRAP. PLoS One 9:1–12

    Article  CAS  Google Scholar 

  48. Hipp L, Beer J, Kuchler O et al (2019) Single-molecule imaging of the transcription factor SRF reveals prolonged chromatin-binding kinetics upon cell stimulation. Proc Natl Acad Sci U S A 116:880–889

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by MEXT KAKENHI on Innovative Areas “Mesoscopic Neurocircuitry” (No. 23115102) to N.Y., “Dynamic Regulation of Brain Function by Scrap and Build System” (No. 16H06460) to N.Y., “Cross-talk between moving cells and microenvironment as a basis of emerging order in multicellular system” (No. 23111516) to N.S., and Grant Nos. 20200009 to N.S. and 20300110 and 2330018 to N.Y. We thank Dr. Ian smith for critical reading of the manuscript and Dr. Yoshiyuki Arai for providing the PTA plug-in. We also thank Dr. Masatoshi Morimatsu and Dr. Toshio Yanagida for setting up the single-molecule microscopy system.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobuhiko Yamamoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kitagawa, H., Sugo, N., Yamamoto, N. (2020). Live-Cell Single-Molecule Imaging with Optogenetics Reveals Dynamics of a Neuronal Activity-Dependent Transcription Factor. In: Yamamoto, N., Okada, Y. (eds) Single Molecule Microscopy in Neurobiology . Neuromethods, vol 154. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0532-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0532-5_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0531-8

  • Online ISBN: 978-1-0716-0532-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics