Skip to main content

In Vivo Single-Molecule Tracking of Voltage-Gated Calcium Channels with Split-Fluorescent Proteins in CRISPR-Engineered C. elegans

  • Protocol
  • First Online:
Single Molecule Microscopy in Neurobiology

Part of the book series: Neuromethods ((NM,volume 154))

Abstract

How voltage-gated calcium channels (VGCCs) mediate signal transductions in response to changes in membrane potential is primarily studied in in vitro and ex vivo systems via biochemical and electrophysiological methods. With the emergence of single-molecule (SM) fluorescence microscopy techniques, it is now possible to characterize the molecular organization and the biophysical dynamics of ion channels in cells with precisions on the order of a few nanometers. However, performing such SM measurements within excitable tissues in intact animals is challenging. Here we describe protocols for an in vivo and tissue-specific SM imaging technique called complementation-activated light microscopy (CALM). By combining native expression of CRISPR-engineered split-fluorescent protein (split-FP) fusions and controlled fluorescence activation of split-FPs in vivo, CALM enables researchers to study the dynamics of individual calcium channels with a precision better than 30 nm directly within neuromuscular synapses of adult Caenorhabditis elegans (C. elegans) nematodes or at the sarcolemma of their body-wall muscle cells. With the availability of various split-FP spectral variants and of tissue-specific fluorescent markers, CALM can be extended to multicolor and nanoscale dynamic studies of virtually any membrane proteins and channels expressed at physiological levels in live animals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu Z, Lavis LD, Betzig E (2015) Imaging live-cell dynamics and structure at the single-molecule level. Mol Cell 58(4):644–659. https://doi.org/10.1016/j.molcel.2015.02.033

    Article  CAS  PubMed  Google Scholar 

  2. Lord SJ, Lee HL, Moerner WE (2010) Single-molecule spectroscopy and imaging of biomolecules in living cells. Anal Chem 82(6):2192–2203. https://doi.org/10.1021/ac9024889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Shashkova S, Leake MC (2017) Single-molecule fluorescence microscopy review: shedding new light on old problems. Biosci Rep 37(4):BSR20170031. https://doi.org/10.1042/bsr20170031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Triller A, Choquet D (2008) New concepts in synaptic biology derived from single-molecule imaging. Neuron 59(3):359–374. https://doi.org/10.1016/j.neuron.2008.06.022

    Article  CAS  PubMed  Google Scholar 

  5. Willig KI, Barrantes FJ (2014) Recent applications of superresolution microscopy in neurobiology. Curr Opin Chem Biol 20:16–21. https://doi.org/10.1016/j.cbpa.2014.03.021

    Article  CAS  PubMed  Google Scholar 

  6. Zhan H, Stanciauskas R, Stigloher C, Dizon KK, Jospin M, Bessereau JL, Pinaud F (2014) In vivo single-molecule imaging identifies altered dynamics of calcium channels in dystrophin-mutant C. elegans. Nat Commun 5:4974. https://doi.org/10.1038/ncomms5974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Doudna JA, Charpentier E (2014) Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346(6213):1258096. https://doi.org/10.1126/science.1258096

    Article  CAS  PubMed  Google Scholar 

  8. Khan AO, Simms VA, Pike JA, Thomas SG, Morgan NV (2017) CRISPR-Cas9 mediated labelling allows for single molecule imaging and resolution. Sci Rep 7(1):8450. https://doi.org/10.1038/s41598-017-08493-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Axelrod D (1981) Cell-substrate contacts illuminated by total internal reflection fluorescence. J Cell Biol 89(1):141–145

    Article  CAS  Google Scholar 

  10. Reck-Peterson SL, Derr ND, Stuurman N (2010) Imaging single molecules using total internal reflection fluorescence microscopy (TIRFM). Cold Spring Harb Protoc 2010(3):pdb.top73. https://doi.org/10.1101/pdb.top73

    Article  PubMed  Google Scholar 

  11. Pinaud F, Dahan M (2011) Targeting and imaging single biomolecules in living cells by complementation-activated light microscopy with split-fluorescent proteins. Proc Natl Acad Sci U S A 108(24):E201–E210. https://doi.org/10.1073/pnas.1101929108

    Article  PubMed  PubMed Central  Google Scholar 

  12. Cabantous S, Terwilliger TC, Waldo GS (2005) Protein tagging and detection with engineered self-assembling fragments of green fluorescent protein. Nat Biotechnol 23(1):102–107. https://doi.org/10.1038/nbt1044

    Article  CAS  PubMed  Google Scholar 

  13. Koker T, Fernandez A, Pinaud F (2018) Characterization of split fluorescent protein variants and quantitative analyses of their self-assembly process. Sci Rep 8(1):5344. https://doi.org/10.1038/s41598-018-23625-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Catterall WA (2011) Voltage-gated calcium channels. Cold Spring Harb Perspect Biol 3(8):a003947. https://doi.org/10.1101/cshperspect.a003947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nanou E, Catterall WA (2018) Calcium channels, synaptic plasticity, and neuropsychiatric disease. Neuron 98(3):466–481. https://doi.org/10.1016/j.neuron.2018.03.017

    Article  CAS  PubMed  Google Scholar 

  16. Mercer AJ, Chen M, Thoreson WB (2011) Lateral mobility of presynaptic L-type calcium channels at photoreceptor ribbon synapses. J Neurosci 31(12):4397–4406. https://doi.org/10.1523/jneurosci.5921-10.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Schneider R, Hosy E, Kohl J, Klueva J, Choquet D, Thomas U, Voigt A, Heine M (2015) Mobility of calcium channels in the presynaptic membrane. Neuron 86(3):672–679. https://doi.org/10.1016/j.neuron.2015.03.050

    Article  CAS  PubMed  Google Scholar 

  18. Dixon RE, Moreno CM, Yuan C, Opitz-Araya X, Binder MD, Navedo MF, Santana LF (2015) Graded Ca(2)(+)/calmodulin-dependent coupling of voltage-gated CaV1.2 channels. Elife 4. https://doi.org/10.7554/eLife.05608

  19. Heine M, Ciuraszkiewicz A, Voigt A, Heck J, Bikbaev A (2016) Surface dynamics of voltage-gated ion channels. Channels (Austin) 10(4):267–281. https://doi.org/10.1080/19336950.2016.1153210

    Article  Google Scholar 

  20. Bargmann C (1998) Neurobiology of the Caenorhabditis elegans Genome. Science 282(5396):2028–2033

    Google Scholar 

  21. Mathews EA, Garcia E, Santi CM, Mullen GP, Thacker C, Moerman DG, Snutch TP (2003) Critical residues of the Caenorhabditis elegans unc-2 voltage-gated calcium channel that affect behavioral and physiological properties. J Neurosci 23(16):6537–6545

    Article  CAS  Google Scholar 

  22. Arellano-Carbajal F, Briseno-Roa L, Couto A, Cheung BH, Labouesse M, de Bono M (2011) Macoilin, a conserved nervous system-specific ER membrane protein that regulates neuronal excitability. PLoS Genet 7(3):e1001341. https://doi.org/10.1371/journal.pgen.1001341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gao S, Zhen M (2011) Action potentials drive body wall muscle contractions in Caenorhabditis elegans. Proc Natl Acad Sci U S A 108(6):2557–2562. https://doi.org/10.1073/pnas.1012346108

    Article  PubMed  PubMed Central  Google Scholar 

  24. Schafer WR, Kenyon CJ (1995) A calcium-channel homologue required for adaptation to dopamine and serotonin in Caenorhabditis elegans. Nature 375(6526):73–78. https://doi.org/10.1038/375073a0

    Article  CAS  PubMed  Google Scholar 

  25. Schafer WR, Sanchez BM, Kenyon CJ (1996) Genes affecting sensitivity to serotonin in Caenorhabditis elegans. Genetics 143(3):1219–1230

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Saheki Y, Bargmann C (2009) Presynaptic CaV2 calcium channel traffic requires CALF-1 and the α2δ subunit UNC-36. Nature Neuroscience 12, 1257–1265

    Google Scholar 

  27. Klassen MP, Shen K (2007) Wnt signaling positions neuromuscular connectivity by inhibiting synapse formation in C. elegans. Cell 130(4):704–716. https://doi.org/10.1016/j.cell.2007.06.046

    Article  CAS  PubMed  Google Scholar 

  28. Frokjaer-Jensen C, Kindt KS, Kerr RA, Suzuki H, Melnik-Martinez K, Gerstbreih B, Driscol M, Schafer WR (2006) Effects of voltage-gated calcium channel subunit genes on calcium influx in cultured C. elegans mechanosensory neurons. J Neurobiol 66(10):1125–1139. https://doi.org/10.1002/neu.20261

    Article  CAS  PubMed  Google Scholar 

  29. Laine V, Frokjaer-Jensen C, Couchoux H, Jospin M (2011) The alpha1 subunit EGL-19, the alpha2/delta subunit UNC-36, and the beta subunit CCB-1 underlie voltage-dependent calcium currents in Caenorhabditis elegans striated muscle. J Biol Chem 286(42):36180–36187. https://doi.org/10.1074/jbc.M111.256149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gottschalk A, Schafer WR (2006) Visualization of integral and peripheral cell surface proteins in live Caenorhabditis elegans. J Neurosci Methods 154(1–2):68–79. https://doi.org/10.1016/j.jneumeth.2005.11.016

    Article  CAS  PubMed  Google Scholar 

  31. Dickinson DJ, Ward JD, Reiner DJ, Goldstein B (2013) Engineering the Caenorhabditis elegans genome using Cas9-triggered homologous recombination. Nat Methods 10(10):1028–1034. https://doi.org/10.1038/nmeth.2641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Waaijers S, Boxem M (2014) Engineering the Caenorhabditis elegans genome with CRISPR/Cas9. Methods 68(3):381–388. https://doi.org/10.1016/j.ymeth.2014.03.024

    Article  CAS  PubMed  Google Scholar 

  33. Paix A, Folkmann A, Seydoux G (2017) Precision genome editing using CRISPR-Cas9 and linear repair templates in C. elegans. Methods 121-122:86–93. https://doi.org/10.1016/j.ymeth.2017.03.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, Eckert MR, Vogel J, Charpentier E (2011) CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471(7340):602–607. https://doi.org/10.1038/nature09886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chiu IM, Morimoto ET, Goodarzi H, Liao JT, O’Keeffe S, Phatnani HP, Muratet M, Carroll MC, Levy S, Tavazoie S, Myers RM, Maniatis T (2013) A neurodegeneration-specific gene-expression signature of acutely isolated microglia from an amyotrophic lateral sclerosis mouse model. Cell Rep 4(2):385–401. https://doi.org/10.1016/j.celrep.2013.06.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cho SW, Kim S, Kim JM, Kim JS (2013) Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol 31(3):230–232. https://doi.org/10.1038/nbt.2507

    Article  CAS  PubMed  Google Scholar 

  37. Lo TW, Pickle CS, Lin S, Ralston EJ, Gurling M, Schartner CM, Bian Q, Doudna JA, Meyer BJ (2013) Precise and heritable genome editing in evolutionarily diverse nematodes using TALENs and CRISPR/Cas9 to engineer insertions and deletions. Genetics 195(2):331–348. https://doi.org/10.1534/genetics.113.155382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chen B, Gilbert LA, Cimini BA, Schnitzbauer J, Zhang W, Li GW, Park J, Blackburn EH, Weissman JS, Qi LS, Huang B (2013) Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 155(7):1479–1491. https://doi.org/10.1016/j.cell.2013.12.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tzur YB, Friedland AE, Nadarajan S, Church GM, Calarco JA, Colaiacovo MP (2013) Heritable custom genomic modifications in Caenorhabditis elegans via a CRISPR-Cas9 system. Genetics 195(3):1181–1185. https://doi.org/10.1534/genetics.113.156075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kim S, Kim D, Cho SW, Kim J, Kim JS (2014) Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res 24(6):1012–1019. https://doi.org/10.1101/gr.171322.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Paix A, Wang Y, Smith HE, Lee CY, Calidas D, Lu T, Smith J, Schmidt H, Krause MW, Seydoux G (2014) Scalable and versatile genome editing using linear DNAs with microhomology to Cas9 sites in Caenorhabditis elegans. Genetics 198(4):1347–1356. https://doi.org/10.1534/genetics.114.170423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Arribere JA, Bell RT, Fu BX, Artiles KL, Hartman PS, Fire AZ (2014) Efficient marker-free recovery of custom genetic modifications with CRISPR/Cas9 in Caenorhabditis elegans. Genetics 198(3):837–846. https://doi.org/10.1534/genetics.114.169730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Evans TC (2006) Transformation and microinjection. In: Community TCeR (ed) WormBook. https://doi.org/10.1895/wormbook.1.108.1

  44. Pawley JB (2006) Points, pixels, and gray levels: digitizing image data. In: Pawley JB (ed) Handbook of biological confocal microscopy. Springer US, Boston, MA, pp 59–79. https://doi.org/10.1007/978-0-387-45524-2_4

    Chapter  Google Scholar 

  45. Nyquist H (1928) Certain topics in telegraph transmission theory. Trans Am Inst Electr Eng 47(2):617–644. https://doi.org/10.1109/t-aiee.1928.5055024

    Article  Google Scholar 

  46. Chenouard N, Smal I, de Chaumont F, Maska M, Sbalzarini IF, Gong Y, Cardinale J, Carthel C, Coraluppi S, Winter M, Cohen AR, Godinez WJ, Rohr K, Kalaidzidis Y, Liang L, Duncan J, Shen H, Xu Y, Magnusson KE, Jalden J, Blau HM, Paul-Gilloteaux P, Roudot P, Kervrann C, Waharte F, Tinevez JY, Shorte SL, Willemse J, Celler K, van Wezel GP, Dan HW, Tsai YS, Ortiz de Solorzano C, Olivo-Marin JC, Meijering E (2014) Objective comparison of particle tracking methods. Nat Methods 11(3):281–289. https://doi.org/10.1038/nmeth.2808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Serge A, Bertaux N, Rigneault H, Marguet D (2008) Dynamic multiple-target tracing to probe spatiotemporal cartography of cell membranes. Nat Methods 5(8):687–694. https://doi.org/10.1038/nmeth.1233

    Article  CAS  PubMed  Google Scholar 

  48. Thompson RE, Larson DR, Webb WW (2002) Precise nanometer localization analysis for individual fluorescent probes. Biophys J 82(5):2775–2783. https://doi.org/10.1016/s0006-3495(02)75618-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Schutz GJ, Schindler H, Schmidt T (1997) Single-molecule microscopy on model membranes reveals anomalous diffusion. Biophys J 73(2):1073–1080. https://doi.org/10.1016/s0006-3495(97)78139-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Pinaud F, Michalet X, Iyer G, Margeat E, Moore HP, Weiss S (2009) Dynamic partitioning of a glycosyl-phosphatidylinositol-anchored protein in glycosphingolipid-rich microdomains imaged by single-quantum dot tracking. Traffic (Copenhagen, Denmark) 10(6):691–712. https://doi.org/10.1111/j.1600-0854.2009.00902.x

    Article  CAS  Google Scholar 

  51. Chen BC, Legant WR, Wang K, Shao L, Milkie DE, Davidson MW, Janetopoulos C, Wu XS, Hammer JA 3rd, Liu Z, English BP, Mimori-Kiyosue Y, Romero DP, Ritter AT, Lippincott-Schwartz J, Fritz-Laylin L, Mullins RD, Mitchell DM, Bembenek JN, Reymann AC, Bohme R, Grill SW, Wang JT, Seydoux G, Tulu US, Kiehart DP, Betzig E (2014) Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution. Science 346(6208):23

    Article  Google Scholar 

  52. Power RM, Huisken J (2017) A guide to light-sheet fluorescence microscopy for multiscale imaging. Nat Methods 14(4):360–373. https://doi.org/10.1038/nmeth.4224

    Article  CAS  PubMed  Google Scholar 

  53. Izeddin I, El Beheiry M, Andilla J, Ciepielewski D, Darzacq X, Dahan M (2012) PSF shaping using adaptive optics for three-dimensional single-molecule super-resolution imaging and tracking. Opt Express 20(5):4957–4967. https://doi.org/10.1364/oe.20.004957

    Article  CAS  PubMed  Google Scholar 

  54. Burke D, Patton B, Huang F, Bewersdorf J, Booth MJ (2015) Adaptive optics correction of specimen-induced aberrations in single-molecule switching microscopy. Optica 2(2):177–185. https://doi.org/10.1364/optica.2.000177

    Article  CAS  Google Scholar 

  55. Tehrani KF, Zhang Y, Shen P, Kner P (2017) Adaptive optics stochastic optical reconstruction microscopy (AO-STORM) by particle swarm optimization. Biomed Opt Express 8(11):5087–5097. https://doi.org/10.1364/boe.8.005087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Booth M, Andrade D, Burke D, Patton B, Zurauskas M (2015) Aberrations and adaptive optics in super-resolution microscopy. Microscopy 64(4):251–261. https://doi.org/10.1093/jmicro/dfv033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Jean-Louis Bessereau and members from his laboratory for kindly providing the transgenic strains with neuromuscular junction markers, Dr. Hong Zhan for sharing the pHZ043 plasmid and alternative genome editing strategies, and Dr. Thomas Duchaine and Vinay Mayya for many critical advices and reagents for CRISPR-based genome engineering.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabien Pinaud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zhao, Y., Pinaud, F. (2020). In Vivo Single-Molecule Tracking of Voltage-Gated Calcium Channels with Split-Fluorescent Proteins in CRISPR-Engineered C. elegans. In: Yamamoto, N., Okada, Y. (eds) Single Molecule Microscopy in Neurobiology . Neuromethods, vol 154. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0532-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0532-5_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0531-8

  • Online ISBN: 978-1-0716-0532-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics