Skip to main content

Investigating Molecular Diffusion Inside Small Neuronal Compartments with Two-Photon Fluorescence Correlation Spectroscopy

  • Protocol
  • First Online:
Single Molecule Microscopy in Neurobiology

Part of the book series: Neuromethods ((NM,volume 154))

  • 572 Accesses

Abstract

Molecular mobility within cells is regulated by cytoplasmic structures and cell geometries. Conversely, intricate cellular functions may depend on heterogeneity and compartment-specific regulation of molecular dynamics. Precise measurements of molecular mobility within neuronal cells are challenging due to their highly complex morphology and heterogeneity in the intracellular environment. Fluorescence correlation spectroscopy (FCS) is a sensitive method for measuring diffusion coefficients of fluorescent molecules. Since FCS relies on molecular motion across a detection volume defined by the optical resolution (<1 fL), FCS is an appropriate method for measurements inside small cellular compartments. Here, we describe basic equipment for two-photon FCS and procedures of measurement and data analysis in cells expressing fluorescent proteins. We also show the data from two-photon FCS measurements inside dendritic shafts or spines of cultured hippocampal neurons and discuss the effect of cellular geometry on measurements of small neuronal compartments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Song AH, Wang D, Chen G, Li Y, Luo J, Duan S, Poo MM (2009) A selective filter for cytoplasmic transport at the axon initial segment. Cell 136:1148–1160. https://doi.org/10.1016/j.cell.2009.01.016

    Article  CAS  PubMed  Google Scholar 

  2. Yasuda R (2017) Biophysics of biochemical signaling in dendritic spines: implications in synaptic plasticity. Biophys J 113(10):2152–2159. https://doi.org/10.1016/j.bpj.2017.07.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Verkman AS (2002) Solute and macromolecule diffusion in cellular aqueous compartments. Trends Biochem Sci 27:27–33. https://doi.org/10.1016/S0968-0004(01)02003-5

    Article  CAS  PubMed  Google Scholar 

  4. Bloodgood BL, Sabatini BL (2005) Neuronal activity regulates diffusion across the neck of dendritic spines. Science 310:866–869. https://doi.org/10.1126/science.1114816

    Article  CAS  PubMed  Google Scholar 

  5. Newpher TM, Ehlers MD (2009) Spine microdomains for postsynaptic signaling and plasticity. Trends Cell Biol 19:218–227. https://doi.org/10.1016/j.tcb.2009.02.004

    Article  PubMed  Google Scholar 

  6. Murakoshi H, Yasuda R (2012) Postsynaptic signaling during plasticity of dendritic spines. Trends Neurosci 35:135–143. https://doi.org/10.1016/j.tins.2011.12.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bosch M, Castro J, Saneyoshi T, Matsuno H, Sur M, Hayashi Y (2014) Structural and molecular remodeling of dendritic spine substructures during long-term potentiation. Neuron 82:299–304. https://doi.org/10.1016/j.neuron.2014.03.021

    Article  CAS  Google Scholar 

  8. Obashi K, Matsuda A, Inoue Y, Okabe S (2019) Precise temporal regulation of molecular diffusion within dendritic spines by actin polymers during structural plasticity. Cell Rep 27:1503–1515.e8. https://doi.org/10.1016/j.celrep.2019.04.006

    Article  CAS  PubMed  Google Scholar 

  9. Swaminathan R, Hoang CP, Verkman AS (1997) Photobleaching recovery and anisotropy decay of green fluorescent protein GFP-S65T in solution and cells: cytoplasmic viscosity probed by green fluorescent protein translational and rotational diffusion. Biophys J 72:299–304. https://doi.org/10.1016/S0006-3495(97)78835-0

    Article  Google Scholar 

  10. Pack C, Saito K, Tamura M, Kinjo M (2006) Microenvironment and effect of energy depletion in the nucleus analyzed by mobility of multiple oligomeric EGFPs. Biophys J 91:299–304. https://doi.org/10.1529/biophysj.105.079467

    Article  CAS  Google Scholar 

  11. Luby-Phelps K (2000) Cytoarchitecture and physical properties of cytoplasm: volume, viscosity, diffusion, intracellular surface area. Int Rev Cytol 192:299–304. https://doi.org/10.1016/S0074-7696(08)60527-6

    Article  Google Scholar 

  12. Lin YC, Phua SC, Lin B, Inoue T (2013) Visualizing molecular diffusion through passive permeability barriers in cells: conventional and novel approaches. Curr Opin Chem Biol 17:299–304. https://doi.org/10.1016/j.cbpa.2013.04.027

    Article  CAS  Google Scholar 

  13. Baum M, Erdel F, Wachsmuth M, Rippe K (2014) Retrieving the intracellular topology from multi-scale protein mobility mapping in living cells. Nat Commun 5:299–304. https://doi.org/10.1038/ncomms5494

    Article  CAS  Google Scholar 

  14. Moerner WE, Shechtman Y, Wang Q (2015) Single-molecule spectroscopy and imaging over the decades. Faraday Discuss 184:9–36. https://doi.org/10.1039/c5fd00149h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lippincott-Schwartz J, Snapp E, Kenworthy A (2001) Studying protein dynamics in living cells. Nat Rev Mol Cell Biol 2:299–304. https://doi.org/10.1038/35073068

    Article  CAS  Google Scholar 

  16. Matsuda T, Miyawaki A, Nagai T (2008) Direct measurement of protein dynamics inside cells using a rationally designed photoconvertible protein. Nat Methods 5:339–345. https://doi.org/10.1038/nmeth.1193

    Article  CAS  PubMed  Google Scholar 

  17. Gura Sadovsky R, Brielle S, Kaganovich D, England JL (2017) Measurement of rapid protein diffusion in the cytoplasm by photo-converted intensity profile expansion. Cell Rep 18:2795–2806. https://doi.org/10.1016/j.celrep.2017.02.063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kinjo M, Sakata H, Mikuni S (2011) First steps for fluorescence correlation spectroscopy of living cells. Cold Spring Harb Protoc 2011:1185–1189. https://doi.org/10.1101/pdb.top065920

    Article  PubMed  Google Scholar 

  19. Bacia K, Haustein E, Schwille P (2014) Fluorescence correlation spectroscopy: principles and applications. Cold Spring Harb Protoc 2014:299–304. https://doi.org/10.1101/pdb.top081802

    Article  Google Scholar 

  20. Kim SA, Heinze KG, Schwille P (2007) Fluorescence correlation spectroscopy in living cells. Nat Methods 4:963–973. https://doi.org/10.1038/nmeth1104

    Article  CAS  PubMed  Google Scholar 

  21. Hess ST, Webb WW (2002) Focal volume optics and experimental artifacts in confocal fluorescence correlation spectroscopy. Biophys J 83:2300–2317. https://doi.org/10.1016/S0006-3495(02)73990-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Heinze KG, Koltermann A, Schwille P (2000) Simultaneous two-photon excitation of distinct labels for dual-color fluorescence cross-correlation analysis. Proc Natl Acad Sci U S A 97:10377–10382. https://doi.org/10.1073/pnas.180317197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Berland K, Shen G (2003) Excitation saturation in two-photon fluorescence correlation spectroscopy. Appl Opt 42:5566–5576. https://doi.org/10.1364/AO.42.005566

    Article  PubMed  Google Scholar 

  24. Dittrich PS, Schwille P (2001) Photobleaching and stabilization of fluorophores used for single-molecule analysis with one- and two-photon excitation. Appl Phys B Lasers Opt 73:829–837. https://doi.org/10.1007/s003400100737

    Article  CAS  Google Scholar 

  25. Schwille P, Haupts U, Maiti S, Webb WW (1999) Molecular dynamics in living cells observed by fluorescence correlation spectroscopy with one- and two-photon excitation. Biophys J 77:2251–2265. https://doi.org/10.1016/S0006-3495(99)77065-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Xu C, Webb WW (1996) Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm. J Opt Soc Am B 13:481. https://doi.org/10.1364/JOSAB.13.000481

    Article  CAS  Google Scholar 

  27. Helmchen F, Denk W (2005) Deep tissue two-photon microscopy. Nat Methods 2:299–304. https://doi.org/10.1038/nmeth818

    Article  CAS  Google Scholar 

  28. Mütze J, Petrášek Z, Schwille P (2007) Independence of maximum single molecule fluorescence count rate on the temporal and spectral laser pulse width in two-photon FCS. J Fluoresc 17:805–810. https://doi.org/10.1007/s10895-007-0246-5

    Article  CAS  PubMed  Google Scholar 

  29. Dross N, Spriet C, Zwerger M, Müller G, Waldeck W, Langowski J (2009) Mapping eGFP oligomer mobility in living cell nuclei. PLoS One 4:1–13. https://doi.org/10.1371/journal.pone.0005041

    Article  CAS  Google Scholar 

  30. Banachowicz E, Patkowski A, Meier G, Klamecka K, Gapiński J (2014) Successful FCS experiment in nonstandard conditions. Langmuir 30:299–304. https://doi.org/10.1021/la5015708

    Article  CAS  Google Scholar 

  31. Medalia O, Weber I, Frangakis AS, Nicastro D, Gerisch G, Baumeister W (2002) Macromolecular architecture in eukaryotic cells visualized by cryoelectron tomography. Science 298:299–304. https://doi.org/10.1126/science.1076184

    Article  CAS  Google Scholar 

  32. Luby-Phelps K, Taylor DL, Lanni F (1986) Probing the structure of cytoplasm. J Cell Biol 102:2015–2022. https://doi.org/10.1083/jcb.102.6.2015

    Article  CAS  PubMed  Google Scholar 

  33. Bacia K, Schwille P (2007) Practical guidelines for dual-color fluorescence cross-correlation spectroscopy. Nat Protoc 2:2842–2856. https://doi.org/10.1038/nprot.2007.410

    Article  CAS  PubMed  Google Scholar 

  34. Okabe S, Kim HD, Miwa A, Kuriu T, Okado H (1999) Continual remodeling of postsynaptic density and its regulation by synaptic activity. Nat Neurosci 2:804–811. https://doi.org/10.1038/12175

    Article  CAS  PubMed  Google Scholar 

  35. Jiang M, Chen G (2006) High Ca2+-phosphate transfection efficiency in low-density neuronal cultures. Nat Protoc 1:695–700. https://doi.org/10.1038/nprot.2006.86

    Article  CAS  PubMed  Google Scholar 

  36. Lakowicz JR (2006) Fluorescence correlation spectroscopy. In: Principles of fluorescence spectroscopy, 3rd edn. Springer, New York

    Chapter  Google Scholar 

  37. Elson EL (2011) Fluorescence correlation spectroscopy: past, present, future. Biophys J 101:2855–2870. https://doi.org/10.1016/j.bpj.2011.11.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Schwille P (2001) Fluorescence correlation spectroscopy and its potential for intracellular applications. Cell Biochem Biophys 34:383–408. https://doi.org/10.1385/CBB:34:3:383

    Article  CAS  PubMed  Google Scholar 

  39. Rigler R, Mets Ü, Widengren J, Kask P (1993) Fluorescence correlation spectroscopy with high count rate and low background: analysis of translational diffusion. Eur Biophys J 22:299–304. https://doi.org/10.1007/BF00185777

    Article  Google Scholar 

  40. Müller CB, Loman A, Pacheco V, Koberling F, Willbold D, Richtering W, Enderlein J (2008) Precise measurement of diffusion by multi-color dual-focus fluorescence correlation spectroscopy. Europhys Lett 83:299–304. https://doi.org/10.1209/0295-5075/83/46001

    Article  CAS  Google Scholar 

  41. Wachsmuth M, Conrad C, Bulkescher J, Koch B, Mahen R, Isokane M, Pepperkok R, Ellenberg J (2015) High-throughput fluorescence correlation spectroscopy enables analysis of proteome dynamics in living cells. Nat Biotechnol 33:299–304. https://doi.org/10.1038/nbt.3146

    Article  CAS  Google Scholar 

  42. Delon A, Usson Y, Derouard J, Biben T, Souchier C (2004) Photobleaching, mobility, and compartmentalisation: inferences in fluorescence correlation spectroscopy. J Fluoresc 14:255–267. https://doi.org/10.1023/B:JOFL.0000024557.73246.f9

    Article  CAS  PubMed  Google Scholar 

  43. Ries J, Bayer M, Csúcs G, Dirkx R, Solimena M, Ewers H, Schwille P (2010) Automated suppression of sample-related artifacts in fluorescence correlation spectroscopy. Opt Express 18:11073. https://doi.org/10.1364/OE.18.011073

    Article  CAS  PubMed  Google Scholar 

  44. Vukojević V, Pramanik A, Yakovleva T, Rigler R, Terenius L, Bakalkin G (2005) Study of molecular events in cells by fluorescence correlation spectroscopy. Cell Mol Life Sci 62:535–550. https://doi.org/10.1007/s00018-004-4305-7

    Article  CAS  PubMed  Google Scholar 

  45. Wachsmuth M, Waldeck W, Langowski J (2000) Anomalous diffusion of fluorescent probes inside living cell nuclei investigated by spatially-resolved fluorescence correlation spectroscopy. J Mol Biol 298:677–689. https://doi.org/10.1006/jmbi.2000.3692

    Article  CAS  PubMed  Google Scholar 

  46. Fradin C, Abu-Arish A, Granek R, Elbaum M (2003) Fluorescence correlation spectroscopy close to a fluctuating membrane. Biophys J 84:2005–2020. https://doi.org/10.1016/S0006-3495(03)75009-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. von der Hocht I, Enderlein J (2007) Fluorescence correlation spectroscopy in cells: confinement and excluded volume effects. Exp Mol Pathol 82:299–304. https://doi.org/10.1016/j.yexmp.2006.12.009

    Article  CAS  Google Scholar 

  48. Gennerich A, Schild D (2000) Fluorescence correlation spectroscopy in small cytosolic compartments depends critically on the diffusion model used. Biophys J 79:3294–3306. https://doi.org/10.1016/S0006-3495(00)76561-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chen JH, Kellner Y, Zagrebelsky M, Grunwald M, Korte M, Walla PJ (2015) Two-photon correlation spectroscopy in single dendritic spines reveals fast actin filament reorganization during activity-dependent growth. PLoS One 10:e0128241. https://doi.org/10.1371/journal.pone.0128241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Arellano JI, Benavides-Piccione R, Defelipe J, Yuste R (2007) Ultrastructure of dendritic spines: correlation between synaptic and spine morphologies. Front Neurosci 1:131–143. https://doi.org/10.3389/neuro.01.1.1.010.2007

    Article  PubMed  PubMed Central  Google Scholar 

  51. Dunaevsky A, Tashiro A, Majewska A, Mason C, Yuste R (1999) Developmental regulation of spine motility in the mammalian central nervous system. Proc Natl Acad Sci U S A 96:13438–13443. https://doi.org/10.1073/PNAS.96.23.13438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Digman MA, Gratton E (2011) Lessons in fluctuation correlation spectroscopy. Annu Rev Phys Chem 62:645–668. https://doi.org/10.1146/annurev-physchem-032210-103424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ringemann C, Harke B, Von Middendorff C, Medda R, Honigmann A, Wagner R, Leutenegger M, Schönle A, Hell SW, Eggeling C (2009) Exploring single-molecule dynamics with fluorescence nanoscopy. New J Phys 11:103054. https://doi.org/10.1088/1367-2630/11/10/103054

    Article  CAS  Google Scholar 

  54. Gao P, Prunsche B, Zhou L, Nienhaus K, Nienhaus GU (2017) Background suppression in fluorescence nanoscopy with stimulated emission double depletion. Nat Photonics 11:299–304. https://doi.org/10.1038/nphoton.2016.279

    Article  CAS  Google Scholar 

  55. Lanzanò L, Scipioni L, Di Bona M, Bianchini P, Bizzarri R, Cardarelli F, Diaspro A, Vicidomini G (2017) Measurement of nanoscale three-dimensional diffusion in the interior of living cells by STED-FCS. Nat Commun 8:1–9. https://doi.org/10.1038/s41467-017-00117-2

    Article  CAS  Google Scholar 

  56. Kirshner H, Aguet F, Sage D, Unser M (2013) 3-D PSF fitting for fluorescence microscopy: implementation and localization application. J Microsc 249:13–25. https://doi.org/10.1111/j.1365-2818.2012.03675.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by Grants-in-Aid for Scientific Research (17H01387 and 18H04727), Core Research for Evolutional Science and Technology from the Japan Science and Technology Agency (JPMJCR14W2), the Project for Elucidating and Controlling Mechanisms of Aging and Longevity from the Japan Agency for Medical Research and Development (17gm5010003), the Tokyo Center for Integrative Science of Human Behavior (CiSHuB) to S.O., and a Grant-in-Aid for JSPS Fellows (13J03845) to K.O.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeo Okabe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Obashi, K., Okabe, S. (2020). Investigating Molecular Diffusion Inside Small Neuronal Compartments with Two-Photon Fluorescence Correlation Spectroscopy. In: Yamamoto, N., Okada, Y. (eds) Single Molecule Microscopy in Neurobiology . Neuromethods, vol 154. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0532-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0532-5_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0531-8

  • Online ISBN: 978-1-0716-0532-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics