Skip to main content

Single-Stranded DNA Aptamers Against TNF and Their Potential Applications

  • Protocol
  • First Online:
Immune Mediators in Cancer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2108))

Abstract

Aptamers are short, single-stranded RNA or DNA sequences, which can bind to protein ligands with high affinity and specificity. Applications of aptamers are broad, ranging from drugs and drug delivery vehicles to biosensors. Tumor necrosis factor (TNF) is an inflammatory cytokine that plays a critical role in the pathogenesis of several autoimmune inflammatory diseases. Blocking TNF activity by monoclonal antibodies or TNF receptor fusion protein has been tremendously successful in treating these diseases. However, manufacturing these biological TNF inhibitors is expensive and a significant proportion of patients do not respond to TNF blockade. Here we describe selection of single-stranded DNA aptamers for TNF blockage, and their bioactivity in blocking TNF-mediated cytotoxicity in vitro. These TNF-binding aptamers have the potential to serve as alternatives to biological TNF inhibitors and to be used as in vivo probes for TNF detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Feldmann M, Maini RN (2010) Anti-TNF therapy, from rationale to standard of care: what lessons has it taught us? J Immunol 185(2):791–794

    Article  CAS  Google Scholar 

  2. Taylor PC, Feldmann M (2009) Anti-TNF biologic agents: still the therapy of choice for rheumatoid arthritis. Nat Rev Rheumatol 5(10):578–582

    Article  CAS  Google Scholar 

  3. Schabert VF, Watson C, Joseph GJ, Iversen P, Burudpakdee C, Harrison DJ (2013) Costs of tumor necrosis factor blockers per treated patient using real-world drug data in a managed care population. J Manag Care Pharm 19(8):621–630

    PubMed  Google Scholar 

  4. Klareskog L, van der Heijde D, de Jager JP, Gough A, Kalden J, Malaise M et al (2004) Therapeutic effect of the combination of etanercept and methotrexate compared with each treatment alone in patients with rheumatoid arthritis: double-blind randomised controlled trial. Lancet 363(9410):675–681

    Article  CAS  Google Scholar 

  5. Maini RN, Breedveld FC, Kalden JR, Smolen JS, Davis D, Macfarlane JD et al (1998) Therapeutic efficacy of multiple intravenous infusions of anti-tumor necrosis factor alpha monoclonal antibody combined with low-dose weekly methotrexate in rheumatoid arthritis. Arthritis Rheum 41(9):1552–1563

    Article  CAS  Google Scholar 

  6. Umicevic Mirkov M, Cui J, Vermeulen SH, Stahl EA, Toonen EJ, Makkinje RR et al (2013) Genome-wide association analysis of anti-TNF drug response in patients with rheumatoid arthritis. Ann Rheum Dis 72(8):1375–1381

    Article  Google Scholar 

  7. Chu CQ, Field M, Feldmann M, Maini RN (1991) Localization of tumor necrosis factor alpha in synovial tissues and at the cartilage-pannus junction in patients with rheumatoid arthritis. Arthritis Rheum 34(9):1125–1132

    Article  CAS  Google Scholar 

  8. Murch SH, Braegger CP, Walker-Smith JA, MacDonald TT (1993) Location of tumour necrosis factor alpha by immunohistochemistry in chronic inflammatory bowel disease. Gut 34(12):1705–1709

    Article  CAS  Google Scholar 

  9. Malviya G, Conti F, Chianelli M, Scopinaro F, Dierckx RA, Signore A (2010) Molecular imaging of rheumatoid arthritis by radiolabelled monoclonal antibodies: new imaging strategies to guide molecular therapies. Eur J Nucl Med Mol Imaging 37(2):386–398

    Article  CAS  Google Scholar 

  10. Atreya R, Neumann H, Neufert C, Waldner MJ, Billmeier U, Zopf Y et al (2014) In vivo imaging using fluorescent antibodies to tumor necrosis factor predicts therapeutic response in Crohn’s disease. Nat Med 20(3):313–318

    Article  CAS  Google Scholar 

  11. Bouchard PR, Hutabarat RM, Thompson KM (2010) Discovery and development of therapeutic aptamers. Annu Rev Pharmacol Toxicol 50:237–257

    Article  CAS  Google Scholar 

  12. Keefe AD, Pai S, Ellington A (2010) Aptamers as therapeutics. Nat Rev Drug Discov 9(7):537–550

    Article  CAS  Google Scholar 

  13. Campa C, Harding SP (2011) Anti-VEGF compounds in the treatment of neovascular age related macular degeneration. Curr Drug Targets 12(2):173–181

    Article  CAS  Google Scholar 

  14. Wang AZ, Farokhzad OC (2014) Current progress of aptamer-based molecular imaging. J Nucl Med 55(3):353–356

    Article  CAS  Google Scholar 

  15. Marimuthu C, Tang TH, Tominaga J, Tan SC, Gopinath SC (2012) Single-stranded DNA (ssDNA) production in DNA aptamer generation. Analyst 137(6):1307–1315

    Article  CAS  Google Scholar 

  16. Galloway CJ, Madanat MS, Mitra G (1991) Monoclonal anti-tumor necrosis factor (TNF) antibodies protect mouse and human cells from TNF cytotoxicity. J Immunol Methods 140(1):37–43

    Article  CAS  Google Scholar 

  17. Shiau MY, Chiou HL, Lee YL, Kuo TM, Chang YH (2001) Establishment of a consistent L929 bioassay system for TNF-alpha quantitation to evaluate the effect of lipopolysaccharide, phytomitogens and cytodifferentiation agents on cytotoxicity of TNF-alpha secreted by adherent human mononuclear cells. Mediat Inflamm 10(4):199–208

    Article  CAS  Google Scholar 

  18. Orava EW, Jarvik N, Shek YL, Sidhu SS, Gariepy J (2013) A short DNA aptamer that recognizes TNFalpha and blocks its activity in vitro. ACS Chem Biol 8(1):170–178

    Article  CAS  Google Scholar 

  19. Mitoma H, Horiuchi T, Tsukamoto H, Ueda N (2018) Molecular mechanisms of action of anti-TNF-alpha agents—comparison among therapeutic TNF-alpha antagonists. Cytokine 101:56–63

    Article  CAS  Google Scholar 

  20. Yomogida K, Wu S, Baravati B, Avendano C, Caldwell T, Maniaci B et al (2013) Cell penetrating recombinant Foxp3 protein enhances Treg function and ameliorates arthritis. Biochem Biophys Res Commun 434(2):263–267

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by an Innovative Grant and a Pilot Grant of Rheumatology Research Foundation (CQC). ST was supported by a Graduate Student Proctorship of Rheumatology Research Foundation. LSZ was supported by a scholarship of China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cong-Qiu Chu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tao, S., Song, P., Zhang, X., Zhang, L., Chu, CQ. (2020). Single-Stranded DNA Aptamers Against TNF and Their Potential Applications. In: Vancurova, I., Zhu, Y. (eds) Immune Mediators in Cancer. Methods in Molecular Biology, vol 2108. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0247-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0247-8_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0246-1

  • Online ISBN: 978-1-0716-0247-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics