Skip to main content

Protocols for the Identification of Phyllosphere-Induced Pollutant Degradation Genes

  • Protocol
  • First Online:
Hydrocarbon and Lipid Microbiology Protocols

Part of the book series: Springer Protocols Handbooks ((SPH))

  • 597 Accesses

Abstract

It is well known that plants can improve air quality by the absorption, accumulation, and degradation of organic pollutants. Bacteria that are living on plant leaf surfaces, the so-called phyllosphere, are also capable of organic pollutant degradation. However, their relative contribution and the factors that influence their degradative capacity are largely unknown. Transcriptional profiling can be a valuable technique to shed further light upon the process of phyllosphere-associated biodegradation. The protocol in this chapter describes the inoculation, harvesting, and recovery of RNA from phyllosphere bacteria. With this protocol, environmental conditions which influence the expression of pollutant degradation genes can be identified. As an example, the technique has been used to demonstrate that the phyllosphere itself is a stimulating environment for the expression of (chloro)phenol degradation genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Korte F, Kvesitadze G, Ugrekhelidze D et al (2000) Organic toxicants and plants. Ecotoxicol Environ Saf 47:1–26

    Article  CAS  PubMed  Google Scholar 

  2. Collins C, Fryer M, Grosso A (2006) Plant uptake of non-ionic organic chemicals. Environ Sci Technol 40:45–52

    Article  CAS  PubMed  Google Scholar 

  3. De Kempeneer L, Sercu B, Vanbrabant W, Van Langenhove H, Verstraete W (2004) Bioaugmentation of the phyllosphere for the removal of toluene from indoor air. Appl Microbiol Biotechnol 64:284–288

    Article  PubMed  Google Scholar 

  4. Sandhu A, Halverson LJ, Beattie GA (2007) Bacterial degradation of airborne phenol in the phyllosphere. Environ Microbiol 9:383–392

    Article  CAS  PubMed  Google Scholar 

  5. Sandhu A, Halverson LJ, Beattie GA (2009) Identification and genetic characterization of phenol-degrading bacteria from leaf microbial communities. Microb Ecol 57:276–285

    Article  CAS  PubMed  Google Scholar 

  6. Waight K, Pinyakong O, Luepromchai E (2007) Degradation of phenanthrene on plant leaves by phyllosphere bacteria. J Gen Appl Microbiol 53:265–272

    Article  CAS  PubMed  Google Scholar 

  7. Yutthammo C, Thongthammachat N, Pinphanichakarn P, Luepromchai E (2010) Diversity and activity of PAH-degrading bacteria in the phyllosphere of ornamental plants. Microb Ecol 59:357–368

    Article  CAS  PubMed  Google Scholar 

  8. Ning JY, Bai ZH, Gang G et al (2010) Functional assembly of bacterial communities with activity for the biodegradation of an organophosphorus pesticide in the rape phyllosphere. FEMS Microbiol Lett 306:135–143

    Article  CAS  PubMed  Google Scholar 

  9. Zhou Y, Qiao XW, Li WJ, Xu JF, Wang W, Chen XY (2011) Phyllosphere bacterial communities associated with the degradation of acetamiprid in Phaseolus vulgaris. Afr J Biotechnol 10:3809–3817

    Article  CAS  Google Scholar 

  10. Scheublin TR, Deusch S, Moreno-Forero SK, Muller JA, van der Meer JR, Leveau JHJ (2014) Transcriptional profiling of gram-positive Arthrobacter in the phyllosphere: induction of pollutant degradation genes by natural plant phenolic compounds. Environ Microbiol 16:2212–2225

    Article  CAS  PubMed  Google Scholar 

  11. Al-Awadhi H, El-Nemr I, Mahmoud H, Sorkhoh NA, Radwan SS (2009) Plant-associated bacteria as tools for the phytoremediation of oily nitrogen-poor soils. Int J Phytoremediation 11:11–27

    Article  Google Scholar 

  12. Scheublin TR, Leveau JHJ (2013) Isolation of Arthrobacter species from the phyllosphere and demonstration of their epiphytic fitness. Microbiologyopen 2:205–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Westerberg K, Elvang AM, Stackebrandt E, Jansson JK (2000) Arthrobacter chlorophenolicus sp. nov., a new species capable of degrading high concentrations of 4-chlorophenol. Int J Syst Evol Microbiol 50:2083–2092

    Article  CAS  PubMed  Google Scholar 

  14. Yu X, Lund SP, Scott RA et al (2013) Transcriptional responses of Pseudomonas syringae to growth in epiphytic versus apoplastic leaf sites. Proc Natl Acad Sci 110:E425–E434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanja R. Scheublin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this protocol

Cite this protocol

Scheublin, T.R. (2015). Protocols for the Identification of Phyllosphere-Induced Pollutant Degradation Genes. In: McGenity, T., Timmis, K., Nogales , B. (eds) Hydrocarbon and Lipid Microbiology Protocols. Springer Protocols Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8623_2015_176

Download citation

  • DOI: https://doi.org/10.1007/8623_2015_176

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53116-7

  • Online ISBN: 978-3-662-53118-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics