Skip to main content

Clone Libraries of Ribosomal RNA Gene Sequences for Characterization of Microbial Communities

  • Protocol
  • First Online:
Hydrocarbon and Lipid Microbiology Protocols

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

Constructing clone libraries from phylogenetic marker genes is one approach for assessing microbial community composition and diversity. Although more expensive and time-consuming than community fingerprinting techniques, sequence analysis of clone libraries provides a high level of phylogenetic resolution due to long read lengths generated by Sanger sequencing. In this chapter, we provide the principles and methodologies of clone library construction and sequence analyses for the purpose of investigating bacterial, archaeal, and fungal community composition. Protocols for generating libraries from either ribosomal RNA (rRNA) genes or rRNA transcripts are provided. Each of the multiple steps involved in cloning is discussed, including DNA extraction, PCR amplification of phylogenetic marker genes, cleanup and preparation of the insert, ligation of the insert into a plasmid vector, transformation of competent Escherichia coli cells, and screening of clones to verify the presence of cloned inserts, followed by DNA sequence analyses. Primers useful for phylogenetic analyses of bacterial, archaeal, and fungal communities are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Torsvik V, Daae FL, Sandaa RA, Ovreas L (1998) Novel techniques for analysing microbial diversity in natural and perturbed environments. J Biotechnol 64:53–62

    Article  CAS  PubMed  Google Scholar 

  2. Blackwood CB, Hudleston D, Zak DR, Buyer JS (2007) Interpreting ecological diversity indices applied to T-RFLP data: insights from simulated microbial communities. Appl Environ Microbiol 73:5276–5283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Neufeld JD, Mohn WW (2005) Assessment of microbial phylogenetic diversity based on environmental nucleic acids. In: Stackebrandt E (ed) Molecular identification, systematics, and population structure of prokaryotes. Springer, Heidelberg

    Google Scholar 

  4. Pace N, Stahl D, Lane D, Olsen G (1986) The analysis of natural microbial-populations by ribosomal-RNA sequences. Adv Microb Ecol 9:1–55

    Article  CAS  Google Scholar 

  5. Nocker A, Burr M, Camper AK (2007) Genotypic microbial community profiling: a critical technical review. Microb Ecol 54:276–289

    Article  CAS  PubMed  Google Scholar 

  6. Timling I, Walker DA, Nusbaum C, Lennon NJ, Taylor DL (2014) Rich and cold: diversity, distribution and drivers of fungal communities in patterned-ground ecosystems of the North American Arctic. Mol Ecol 23:3258–3272

    Article  CAS  PubMed  Google Scholar 

  7. Taylor D, Bruns T (1999) Community structure of ectomycorrhizal fungi in a Pinus muricata forest: minimal overlap between the mature forest and resistant propagule communities. Mol Ecol 8:1837–1850

    Article  CAS  PubMed  Google Scholar 

  8. Kerkhof L, Ward BB (1993) Comparison of nucleic acid hybridization and fluorometry for measurement of the relationship between RNA/DNA ratio and growth rate in a marine bacterium. Appl Environ Microbiol 59:1303–1309

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Muttray AF, Mohn WW (1999) Quantitation of the population size and metabolic activity of a resin acid degrading bacterium in activated sludge using slot-blot hybridization to measure the rRNA:rDNA ratio. Microb Ecol 38:348–357

    Article  CAS  PubMed  Google Scholar 

  10. Akob DM, Mills HJ, Kostka JE (2007) Metabolically active microbial communities in uranium-contaminated subsurface sediments. FEMS Microbiol Ecol 59:95–107

    Article  CAS  PubMed  Google Scholar 

  11. Mills HJ, Martinez RJ, Story S, Sobecky PA (2005) Characterization of microbial community structure in Gulf of Mexico gas hydrates: comparative analysis of DNA- and RNA-derived clone libraries. Appl Environ Microbiol 71:3235–3247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Anderson I, Parkin P (2007) Detection of active soil fungi by RT-PCR amplification of precursor rRNA molecules. J Microbiol Methods 68:248–253

    Article  CAS  PubMed  Google Scholar 

  13. Nogales B, Moore ERB, Llobet-Brossa E, Rossello-Mora R, Amann R, Timmis KN (2001) Combined use of 16S ribosomal DNA and 16S rRNA to study the bacterial community of polychlorinated biphenyl-polluted soil. Appl Environ Microbiol 67:1874–1884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Taylor DL, Herriott IC, Stone KE, McFarland JW, Booth MG, Leigh MB (2010) Structure and resilience of fungal communities in Alaskan boreal forest soils. Can J For Res 40:1288–1301

    Article  CAS  Google Scholar 

  15. Felsenstein J (1988) Phylogenies from molecular sequences: inference and reliability. Annu Rev Genet 22:521–565

    Article  CAS  PubMed  Google Scholar 

  16. Taylor DL, Herriott IC, Long J, O’Neill K (2007) TOPO TA is A-OK: a test of phylogenetic bias in fungal environmental clone library construction. Environ Microbiol 9:1329–1334

    Article  CAS  PubMed  Google Scholar 

  17. Kunin V, Engelbrektson A, Ochman H, Hugenholtz P (2010) Wrinkles in the rare biosphere: pyrosequencing errors can lead to artificial inflation of diversity estimates. Environ Microbiol 12:118–123

    Article  CAS  PubMed  Google Scholar 

  18. Nilsson HR, Tedersoo L, Lindahl BD et al (2011) Towards standardization of the description and publication of next-generation sequencing datasets of fungal communities. New Phytol 191:314–318

    Article  Google Scholar 

  19. Glass DJ, Takebayashi N, Olson LE, Taylor DL (2013) Evaluation of the authenticity of a highly novel environmental sequence from boreal forest soil using ribosomal RNA secondary structure modeling. Mol Phylogenet Evol 67:234–245

    Article  CAS  PubMed  Google Scholar 

  20. Rosling A, Timling I, Taylor DL (2013) Archaeorhizomycetes: patterns of distribution and abundance in soil. In: Genomics of soil-and plant-associated fungi. Springer, Berlin, pp 333–349

    Chapter  Google Scholar 

  21. Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Rapp BA, Wheeler DL (2000) Genbank. Nucleic Acids Res 28:15–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cole JR, Wang Q, Cardenas E et al (2009) The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37:D141–D145

    Article  CAS  PubMed  Google Scholar 

  23. Pruesse E, Quast C, Knittel K et al (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35:7188–7196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kõljalg U, Larsson KH, Abarenkov K et al (2005) UNITE: a database providing web-based methods for the molecular identification of ectomycorrhizal fungi. New Phytol 166:1063–1068

    Article  PubMed  Google Scholar 

  25. Kulikova T, Akhtar R, Aldebert P et al (2007) EMBL Nucleotide Sequence Database in 2006. Nucleic Acids Res 35:D16–D20

    Article  CAS  PubMed  Google Scholar 

  26. Frank JA, Reich CI, Sharma S, Weisbaum JS, Wilson BA, Olsen GJ (2008) Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl Environ Microbiol 74:2461–2470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sipos R, Szekely AJ, Palatinszky M, Revesz S, Marialigeti K, Nikolausz M (2007) Effect of primer mismatch, annealing temperature and PCR cycle number on 16S rRNA gene-targetting bacterial community analysis. FEMS Microbiol Ecol 60:341–350

    Article  CAS  PubMed  Google Scholar 

  28. Baker G, Smith J, Cowan D (2003) Review and re-analysis of domain-specific 16S primers. J Microbiol Methods 55:541–555

    Article  CAS  PubMed  Google Scholar 

  29. Fierer N, Jackson JA, Vilgalys R, Jackson RB (2005) Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays. Appl Environ Microbiol 71:4117–4120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Taylor D, McCormick M (2008) Internal transcribed spacer primers and sequences for improved characterization of basidiomycetous orchid mycorrhizas. New Phytol 177:1020–1033

    Article  CAS  PubMed  Google Scholar 

  31. Sambrook J, Russell D (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  32. Stackebrandt E, Frederiksen W, Garrity GM, Grimont P, Kampfer P, Maiden M (2002) Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52:1043–1047

    CAS  PubMed  Google Scholar 

  33. Rosselló-Mora R, Amann R (2001) The species concept for prokaryotes. FEMS Microbiol Rev 25:39–67

    Article  PubMed  Google Scholar 

  34. Cohan F (2002) What are bacterial species? Annu Rev Microbiol 56:457–487

    Article  CAS  PubMed  Google Scholar 

  35. Moore ERB, Mau M, Arnscheidt A et al (1996) The determination and comparison of the 16S rRNA gene sequences of species of the genus Pseudomonas (sensu stricto) and estimation of the natural intrageneric relationships. Syst Appl Microbiol 19:478–492

    Article  CAS  Google Scholar 

  36. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM (2007) DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57:81–91

    Article  CAS  PubMed  Google Scholar 

  37. Vilgalys R (2003) Taxonomic misidentification in public DNA databases. New Phytol 160:4–5

    Article  CAS  Google Scholar 

  38. O’Brien HE, Parrent JL, Jackson JA, Moncalvo JM, Vilgalys R (2005) Fungal community analysis by large-scale sequencing of environmental samples. Appl Environ Microbiol 71:5544–5550

    Article  PubMed  PubMed Central  Google Scholar 

  39. Suzuki MT, Giovannoni SJ (1996) Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Appl Environ Microbiol 62:625–630

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Polz MF, Cavanaugh CM (1998) Bias in template-to-product ratios in multitemplate PCR. Appl Environ Microbiol 64:3724–3730

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Suzuki M, Rappe MS, Giovannoni SJ (1998) Kinetic bias in estimates of coastal picoplankton community structure obtained by measurements of small-subunit rRNA gene PCR amplicon length heterogeneity. Appl Environ Microbiol 64:4522–4529

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Becker S, Boger P, Oehlmann R, Ernst A (2000) PCR bias in ecological analysis: a case study for quantitative Taq nuclease assays in analyses of microbial communities. Appl Environ Microbiol 66:4945–4953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Acinas SG, Sarma-Rupavtarm R, Klepac-Ceraj V, Polz MF (2005) PCR-induced sequence artifacts and bias: insights from comparison of two 16S rRNA clone libraries constructed from the same sample. Appl Environ Microbiol 71:8966–8969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kennedy K, Hall MW, Lynch MDJ, Moreno-Hagelsieb G, Neufeld JD (2014) Evaluating bias of illumina-based bacterial 16S rRNA gene profiles. Appl Environ Microbiol 80:5717–5722

    Article  PubMed  PubMed Central  Google Scholar 

  45. Hughes JB, Hellmann JJ, Ricketts TH, Bohannan BJM (2001) Counting the uncountable: statistical approaches to estimating microbial diversity. Appl Environ Microbiol 67:4399–4406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Griffiths RI, Whiteley AS, O’Donnell AG, Bailey MJ (2000) Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA- and RNA-based microbial community composition. Appl Environ Microbiol 66:5488–5491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhou J, Bruns MA, Tiedje JM (1996) DNA recovery from soils of diverse composition. Appl Environ Microbiol 62:316–322

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Hurt RA, Qiu X, Wu L et al (2001) Simultaneous recovery of RNA and DNA from soils and sediments. Appl Environ Microbiol 67:4495–4503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, pp 115–175

    Google Scholar 

  50. Marchesi J, Sato T, Weightman A et al (1998) Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Appl Environ Microbiol 64:795–799

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Gardes M, Bruns T (1993) ITS primers with enhanced specificity for basidiomycetes – application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118

    Article  CAS  PubMed  Google Scholar 

  52. White TJ, Bruns TD, Lee SB, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis N, Gelfand D, Sninsky J, White T (eds) PCR – protocols and applications – a laboratory manual. Academic, New York, pp 315–322

    Google Scholar 

  53. Klindworth A, Pruesse E, Schweer T et al (2012) Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res 41:e1

    Article  PubMed  PubMed Central  Google Scholar 

  54. Takahashi S, Tomita J, Nishioka K, Hisada T, Nishijima M (2014) Development of a prokaryotic universal primer for simultaneous analysis of Bacteria and Archaea using next-generation sequencing. PLoS One 9:e105592

    Article  PubMed  PubMed Central  Google Scholar 

  55. Bokulich NA, Mills DA (2013) Improved selection of internal transcribed spacer-specific primers enables quantitative, ultra-high-throughput profiling of fungal communities. Appl Environ Microbiol 79:2519–2526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ihrmark K, Bödeker I, Cruz‐Martinez K et al (2012) New primers to amplify the fungal ITS2 region–evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiol Ecol 82:666–677

    Article  CAS  PubMed  Google Scholar 

  57. Brodie E (2005) PCR and TOPO TA cloning for community analysis. Greengenes: 16S rRNA gene database and workbench compatible with ARB. http://greengenes.lbl.gov/Download/Protocols/

  58. Gardes M, Bruns TD (1996) ITS-RFLP matching for the identification of fungi. In: Clapp JP (ed) Methods in molecular biology species diagnostics protocols: PCR and other nucleic acid methods. Humana Press, Totowa, pp 177–186

    Google Scholar 

  59. Sanger F, Nicklen S, Coulson A (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74:5463–5467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ausubel F, Brent R, Kingston R et al (2002) Short protocols in molecular biology, 5th edn. Wiley, New York

    Google Scholar 

  61. Ewing B, Hillier L, Wendl M, Green P (1998) Basecalling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 8:175–185

    Article  CAS  PubMed  Google Scholar 

  62. Chou HH, Holmes MH (2001) DNA sequence quality trimming and vector removal. Bioinformatics 17:1093–1104

    Article  CAS  PubMed  Google Scholar 

  63. Ashelford KE, Chuzhanova NA, Fry JC, Jones AJ, Weightman AJ (2005) At least 1 in 20 16S rRNA sequence records currently held in public repositories is estimated to contain substantial anomalies. Appl Environ Microbiol 71:7724–7736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ashelford KE, Chuzhanova NA, Fry JC, Jones AJ, Weightman AJ (2006) New screening software shows that most recent large 16S rRNA gene clone libraries contain chimeras. Appl Environ Microbiol 72:5734–5741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Cole JR, Chai B, Marsh TL et al (2003) The Ribosomal Database Project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acids Res 31:442–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Huber T, Faulkner G, Hugenholtz P (2004) Bellerophon: a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics 20:2317–2319

    Article  CAS  PubMed  Google Scholar 

  67. Gonzalez JM, Zimmermann J, Saiz-Jimenez C (2005) Evaluating putative chimeric sequences from PCR-amplified products. Bioinformatics 21:333–337

    Article  CAS  PubMed  Google Scholar 

  68. Haas BJ, Gevers D, Earl AM et al (2011) Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res 21:494–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Quince C, Lanzen A, Davenport RJ, Turnbaugh PJ (2011) Removing noise from pyrosequenced amplicons. BMC Bioinformatics 12:38

    Article  PubMed  PubMed Central  Google Scholar 

  70. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Taylor DL, Houston S (2011) A bioinformatics pipeline for sequence-based analyses of fungal biodiversity. In: Fungal genomics. Springer, Berlin, pp 141–155

    Chapter  Google Scholar 

  72. Cole JR, Chai B, Farris RJ et al (2005) The Ribosomal Database Project (RDPII): sequences and tools for high-throughput rRNA analysis. Nucleic Acids Res 33(Database Issue):D294–D296

    Article  CAS  PubMed  Google Scholar 

  73. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) A Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Schloss P, Handelsman J (2005) Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl Environ Microbiol 71:1501–1506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Schloss PD, Handelsman J (2006) Toward a census of bacteria in soil. PLoS Comput Biol 2:e92

    Article  PubMed  PubMed Central  Google Scholar 

  76. Taylor DL, Hollingsworth TN, McFarland JW, Lennon NJ, Nusbaum C, Ruess RW (2014) A first comprehensive census of fungi in soil reveals both hyperdiversity and fine-scale niche partitioning. Ecol Monogr 84:3–20

    Article  Google Scholar 

  77. Lozupone C, Hamady M, Kelley S, Knight R (2007) Quantitative and qualitative beta diversity measures lead to different insights into factors that structure microbial communities. Appl Environ Microbiol 73:1576–1585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lozupone C, Hamady M, Knight R (2006) UniFrac – an online tool for comparing microbial community diversity in a phylogenetic context. BMC Bioinformatics 7:371–384

    Article  PubMed  PubMed Central  Google Scholar 

  79. Schloss P, Handelsman J (2006) Introducing SONS, a tool for operational taxonomic unit-based comparisons of microbial community memberships and structures. Appl Environ Microbiol 72:6773–6779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Singleton DR, Furlong MA, Rathbun SL, Whitman WB (2001) Quantitative comparisons of 16S rRNA gene sequence libraries from environmental samples. Appl Environ Microbiol 67:4374–4376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Schloss PD, Larget BR, Handelsman J (2004) Integration of microbial ecology and statistics: a test to compare gene libraries. Appl Environ Microbiol 70:5485–5492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Schloss A, Handelsman J (2006) Introducing TreeClimber, a test to compare microbial community structures. Appl Environ Microbiol 72:2379–2384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Caporaso JG, Kuczynski J, Stombaugh J et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Schloss PD, Westcott SL, Ryabin T et al (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lynch MDJ, Masella AP, Hall MW, Bartram AK, Neufeld JD (2013) AXIOME: automated exploration of microbial diversity. GigaScience 2:3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Neufeld JD, Vohra J, Dumont MG et al (2007) DNA stable-isotope probing. Nat Protoc 2:860–866

    Article  CAS  PubMed  Google Scholar 

  87. Bartram A, Poon C, Neufeld J (2009) Nucleic acid contamination of glycogen used in nucleic acid precipitation and assessment of linear polyacrylamide as an alternative co-precipitant. Biotechniques 47:1019–1022

    Article  CAS  PubMed  Google Scholar 

  88. Tanaka Y, Sogabe M, Okumura K, Kurane R (2002) A highly selective direct method of detecting sulphate-reducing bacteria. Lett Appl Microbiol 35:242–246

    Article  CAS  PubMed  Google Scholar 

  89. Engel K, Pinnell L, Cheng J, Charles TC, Neufeld JD (2012) Nonlinear electrophoresis for purification of soil DNA for metagenomics. J Microbiol Methods 88:35–40

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Stefan Green is thanked for constructive comments on this protocol. MBL was supported by the National Science Foundation under Award 0626544. DLT was supported by the National Science Foundation under Grant no. 0632332, and JDN acknowledges a Discovery Grant from the Natural Sciences and Engineering Research Council of Canada (NSERC).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mary Beth Leigh , Lee Taylor or Josh D. Neufeld .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this protocol

Cite this protocol

Leigh, M.B., Taylor, L., Neufeld, J.D. (2015). Clone Libraries of Ribosomal RNA Gene Sequences for Characterization of Microbial Communities. In: McGenity, T., Timmis, K., Nogales , B. (eds) Hydrocarbon and Lipid Microbiology Protocols. Springer Protocols Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8623_2015_120

Download citation

  • DOI: https://doi.org/10.1007/8623_2015_120

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-52776-4

  • Online ISBN: 978-3-662-52778-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics