Skip to main content

A Microfluidic Culture Platform for Neurotrophin Signaling Studies

  • Protocol
  • First Online:
Brain-Derived Neurotrophic Factor (BDNF)

Part of the book series: Neuromethods ((NM,volume 143))

  • 642 Accesses

Abstract

Brain-derived neurotrophic factor (BDNF) has a crucial role in neuronal development, maintenance, and function. Some of the effects induced by the neurotrophins occur at neuronal sub-domains, which are located at significant distances from the cell body. The study of the mechanisms involved in the axonal responses to BDNF, as well as to other pro- and mature neurotrophins, requires a reliable system, to physically isolate these sub-domains from the soma in order to better evaluate its contribution to the neuronal response. Here we describe how to culture and maintain dorsal root ganglia (DRG) neurons in microfluidic chambers and demonstrate the physical and fluidic isolation of pure axonal populations (distal axons) in this platform. In addition, we describe how to independently manipulate distal axons or the somal compartment and how to retrogradely label the targeted neurons. In this chapter we describe how this powerful tool can be used to study the effect of neurotrophins in spatially isolated axons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lu B, Pang PT, Woo NH (2005) The yin and yang of neurotrophin action. Nat Rev Neurosci 6(8):603–614. https://doi.org/10.1038/nrn1726

    Article  CAS  PubMed  Google Scholar 

  2. Hennigan A, O’Callaghan RM, Kelly AM (2007) Neurotrophins and their receptors: roles in plasticity, neurodegeneration and neuroprotection. Biochem Soc Trans 35(Pt 2):424–427. https://doi.org/10.1042/BST0350424

    Article  CAS  PubMed  Google Scholar 

  3. Costa RO, Perestrelo T, Almeida RD (2017) PROneurotrophins and CONSequences. Mol Neurobiol. https://doi.org/10.1007/s12035-017-0505-7

    Article  PubMed  Google Scholar 

  4. Bibel M, Barde YA (2000) Neurotrophins: key regulators of cell fate and cell shape in the vertebrate nervous system. Genes Dev 14(23):2919–2937. https://doi.org/10.1101/gad.841400

    Article  CAS  PubMed  Google Scholar 

  5. Bhattacharyya A, Watson FL, Pomeroy SL, Zhang YZ, Stiles CD, Segal RA (2002) High-resolution imaging demonstrates dynein-based vesicular transport of activated Trk receptors. J Neurobiol 51(4):302–312. https://doi.org/10.1002/neu.10062

    Article  CAS  PubMed  Google Scholar 

  6. Iwabe S, Moreno-Mendoza NA, Trigo-Tavera F, Crowder C, Garcia-Sanchez GA (2007) Retrograde axonal transport obstruction of brain-derived neurotrophic factor (BDNF) and its TrkB receptor in the retina and optic nerve of American Cocker Spaniel dogs with spontaneous glaucoma. Vet Ophthalmol 10(Suppl 1):12–19. https://doi.org/10.1111/j.1463-5224.2007.00504.x

    Article  PubMed  Google Scholar 

  7. Jezierski MK, Sohrabji F (2003) Estrogen enhances retrograde transport of brain-derived neurotrophic factor in the rodent forebrain. Endocrinology 144(11):5022–5029. https://doi.org/10.1210/en.2003-0724

    Article  CAS  PubMed  Google Scholar 

  8. Butowt R, von Bartheld CS (2009) Fates of neurotrophins after retrograde axonal transport: phosphorylation of p75NTR is a sorting signal for delayed degradation. J Neurosci 29(34):10715–10729. https://doi.org/10.1523/JNEUROSCI.2512-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. van Oterendorp C, Sgouris S, Schallner N, Biermann J, Lagreze WA (2014) Retrograde neurotrophic signaling in rat retinal ganglion cells is transmitted via the ERK5 but not the ERK1/2 pathway. Invest Ophthalmol Vis Sci 55(2):658–665. https://doi.org/10.1167/iovs.13-12985

    Article  CAS  PubMed  Google Scholar 

  10. Janiga TA, Rind HB, von Bartheld CS (2000) Differential effects of the trophic factors BDNF, NT-4, GDNF, and IGF-I on the isthmo-optic nucleus in chick embryos. J Neurobiol 43(3):289–303. https://doi.org/10.1002/(SICI)1097-4695(20000605)43:3<289::AID-NEU7>3.0.CO;2-5

    Article  CAS  PubMed  Google Scholar 

  11. Inagaki T, Begum T, Reza F, Horibe S, Inaba M, Yoshimura Y, Komatsu Y (2008) Brain-derived neurotrophic factor-mediated retrograde signaling required for the induction of long-term potentiation at inhibitory synapses of visual cortical pyramidal neurons. Neurosci Res 61(2):192–200. https://doi.org/10.1016/j.neures.2008.02.006

    Article  CAS  PubMed  Google Scholar 

  12. Wetmore C, Cao YH, Pettersson RF, Olson L (1991) Brain-derived neurotrophic factor: subcellular compartmentalization and interneuronal transfer as visualized with anti-peptide antibodies. Proc Natl Acad Sci U S A 88(21):9843–9847. https://doi.org/10.1073/pnas.88.21.9843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Campenot RB (1977) Local control of neurite development by nerve growth factor. Proc Natl Acad Sci U S A 74(10):4516–4519. https://doi.org/10.1073/pnas.74.10.4516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Campenot RB, Lund K, Mok SA (2009) Production of compartmented cultures of rat sympathetic neurons. Nat Protoc 4(12):1869–1887. https://doi.org/10.1038/nprot.2009.210

    Article  CAS  PubMed  Google Scholar 

  15. Eng H, Lund K, Campenot RB (1999) Synthesis of beta-tubulin, actin, and other proteins in axons of sympathetic neurons in compartmented cultures. J Neurosci 19(1):1–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mok SA, Campenot RB (2007) A nerve growth factor-induced retrograde survival signal mediated by mechanisms downstream of TrkA. Neuropharmacology 52(2):270–278. https://doi.org/10.1016/j.neuropharm.2006.07.032

    Article  CAS  PubMed  Google Scholar 

  17. Mok SA, Lund K, Lapointe P, Campenot RB (2013) A HaloTag(R) method for assessing the retrograde axonal transport of the p75 neurotrophin receptor and other proteins in compartmented cultures of rat sympathetic neurons. J Neurosci Methods 214(1):91–104. https://doi.org/10.1016/j.jneumeth.2013.01.006

    Article  CAS  PubMed  Google Scholar 

  18. Pinto MJ, Pedro JR, Costa RO, Almeida RD (2016) Visualizing K48 ubiquitination during presynaptic formation by ubiquitination-induced fluorescence complementation (UiFC). Front Mol Neurosci 9:43. https://doi.org/10.3389/fnmol.2016.00043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Taylor AM, Blurton-Jones M, Rhee SW, Cribbs DH, Cotman CW, Jeon NL (2005) A microfluidic culture platform for CNS axonal injury, regeneration and transport. Nat Methods 2(8):599–605. https://doi.org/10.1038/nmeth777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schliwa M, van Blerkom J (1981) Structural interaction of cytoskeletal components. J Cell Biol 90(1):222–235. https://doi.org/10.1083/jcb.90.1.222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media New York

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Costa, R.O., Perestrelo, T., Tomé, D., Almeida, R.D. (2018). A Microfluidic Culture Platform for Neurotrophin Signaling Studies. In: Duarte, C., Tongiorgi, E. (eds) Brain-Derived Neurotrophic Factor (BDNF). Neuromethods, vol 143. Humana, New York, NY. https://doi.org/10.1007/7657_2018_9

Download citation

  • DOI: https://doi.org/10.1007/7657_2018_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-8969-0

  • Online ISBN: 978-1-4939-8970-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics