Advertisement

Analysis of TrkB Receptor Activity Using FRET Sensors

  • Charles E. Hall
  • James O. McNamara
  • Ryohei YasudaEmail author
Protocol
Part of the Neuromethods book series (NM, volume 143)

Abstract

Here, we describe the use of 2-photon fluorescence lifetime imaging (2pFLIM) of a Förster resonance energy transfer (FRET) sensor to study the spatial and temporal activity pattern of the BDNF receptor TrkB. Combining 2pFLIM with laser uncaging of MNI-glutamate over single dendritic spines in organotypic hippocampal slices allows measurement of glutamate-induced changes in TrkB activity within a single spine or dendrite. This protocol covers the installation and setup of requisite hardware and software, the use of the software to acquire data, and the analysis of the data. A prerequisite for attempting this protocol is proficiency with 2-photon imaging of live cells and a microscope that is controlled by ScanImage 3.8 (Vidrio Technologies).

Keywords

2-Photon Dendritic spines FLIM FRET Glutamate uncaging 

Notes

Acknowledgment

This work was supported by NS05621 (NIH) to JOM.

References

  1. 1.
    Yasuda R (2006) Imaging spatiotemporal dynamics of neuronal signaling using fluorescence resonance energy transfer and fluorescence lifetime imaging microscopy. Curr Opin Neurobiol 16(5):551–561.  https://doi.org/10.1016/j.conb.2006.08.012 CrossRefPubMedGoogle Scholar
  2. 2.
    Yasuda R (2012) Studying signal transduction in single dendritic spines. Cold Spring Harb Perspect Biol 4(10).  https://doi.org/10.1101/cshperspect.a005611 CrossRefGoogle Scholar
  3. 3.
    Minichiello L (2009) TrkB signalling pathways in LTP and learning. Nat Rev Neurosci 10(12):850–860.  https://doi.org/10.1038/nrn2738 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Harward SC, Hedrick NG, Hall CE, Parra-bueno P, Milner TA, Pan E, Laviv T, Hempstead BL, Yasuda R (2016) Autocrine BDNF-TrkB signalling within a single dendritic spine. Nature 538(7623):99–103.  https://doi.org/10.1038/nature19766 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Stoppini L, Buchs P-A, Muller D (1991) A simple method for organotypic cultures of nervous tissue. J Neurosci Methods 37(2):173–182.  https://doi.org/10.1016/0165-0270(91)90128-M CrossRefPubMedGoogle Scholar
  6. 6.
    Woods G, Zito K (2008) Preparation of gene gun bullets and biolistic transfection of neurons in slice culture. J Vis Exp 12:3–6.  https://doi.org/10.3791/675 CrossRefGoogle Scholar
  7. 7.
    Nishiyama J, Yasuda R (2015) Biochemical computation for spine structural plasticity. Neuron 87(1):63–75.  https://doi.org/10.1016/j.neuron.2015.05.043 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Harvey CD, Yasuda R, Zhong H, Svoboda K (2008) The spread of Ras activity triggered by activation of a single dendritic spine. Science 321(5885):136–140.  https://doi.org/10.1126/science.1159675 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Murakoshi H, Wang H, Yasuda R (2011) Local, persistent activation of Rho GTPases during plasticity of single dendritic spines. Nature 472(7341):100–104.  https://doi.org/10.1038/nature09823 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Hedrick NG, Harward SC, Hall CE, Murakoshi H, McNamara JO, Yasuda R (2016) Rho GTPase complementation underlies BDNF-dependent homo- and heterosynaptic plasticity. Nature.  https://doi.org/10.1038/nature19784 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2018

Authors and Affiliations

  • Charles E. Hall
    • 1
  • James O. McNamara
    • 2
  • Ryohei Yasuda
    • 3
    Email author
  1. 1.Department of PharmacologyDuke University School of MedicineDurhamUSA
  2. 2.Department of NeurobiologyDuke University School of MedicineDurhamUSA
  3. 3.Max Planck Florida Institute for NeuroscienceJupiterUSA

Personalised recommendations