Advertisement

High-Speed Videography of Embodied Active Sensing in the Rodent Whisker System

  • Jason T. Ritt
Protocol
Part of the Neuromethods book series (NM, volume 67)

Abstract

Self-motion is often a major component of sensation. Comprehensive understanding of natural sensory processing in neural systems thus requires neural recording be coupled to high-resolution observation of behavior. The rodent vibrissa (whisker) system has several advantages as a model for network function during sensory behaviors, but only recently have inputs at the whisker level received serious study. This chapter reviews methods for capturing biological motion via high-speed videography, with emphasis on tracking rodent whiskers or other similar processes such as insect antennae.

Key words

Active touch Vibrissa Digital video Computer vision Biomechanics 

References

  1. 1.
    Reinagel P, Zador AM (1999) Natural scene statistics at the centre of gaze. Network 10:341–350PubMedCrossRefGoogle Scholar
  2. 2.
    Rucci M, Iovin R, Poletti M, Santini F (2007) Miniature eye movements enhance fine spatial detail. Nature 447:851–854PubMedCrossRefGoogle Scholar
  3. 3.
    Olveczky BP, Baccus SA, Meister M (2007) Retinal adaptation to object motion. Neuron 56:689–700PubMedCrossRefGoogle Scholar
  4. 4.
    Schumann F, Einhauser-Treyer W, Vockeroth J, Bartl K, Schneider E, Konig P (2008) Salient features in gaze-aligned recordings of human visual input during free exploration of natural environments. J Vis 8(12):11–17CrossRefGoogle Scholar
  5. 5.
    Berg DJ, Boehnke SE, Marino RA, Munoz DP, Itti L (2009) Free viewing of dynamic stimuli by humans and monkeys. J Vis 9(19):11–15Google Scholar
  6. 6.
    Tucker VA (2000) The deep fovea, sideways vision and spiral flight paths in raptors. J Exp Biol 203:3745–3754PubMedGoogle Scholar
  7. 7.
    Zeil J, Hemmi JM (2006) The visual ecology of fiddler crabs. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 192:1–25PubMedCrossRefGoogle Scholar
  8. 8.
    Knutsen PM, Ahissar E (2009) Orthogonal coding of object location. Trends Neurosci 32:101–109PubMedCrossRefGoogle Scholar
  9. 9.
    Hyson RL (2005) The analysis of interaural time differences in the chick brain stem. Physiol Behav 86:297–305PubMedCrossRefGoogle Scholar
  10. 10.
    Christensen-Dalsgaard J, Manley GA (2005) Directionality of the lizard ear. J Exp Biol 208:1209–1217PubMedCrossRefGoogle Scholar
  11. 11.
    Lederman SJ, Klatzky RL (1990) Haptic classification of common objects: knowledge-driven exploration. Cogn Psychol 22:421–459PubMedCrossRefGoogle Scholar
  12. 12.
    Klatzky RL, Pellegrino J, McCloskey BP, Lederman SJ (1993) Cognitive representations of functional interactions with objects. Mem Cognit 21:294–303PubMedCrossRefGoogle Scholar
  13. 13.
    Connor CE, Hsiao SS, Phillips JR, Johnson KO (1990) Tactile roughness: neural codes that account for psychophysical magnitude estimates. J Neurosci 10:3823–3836PubMedGoogle Scholar
  14. 14.
    DiCarlo JJ, Johnson KO (1999) Velocity invariance of receptive field structure in somatosensory cortical area 3b of the alert monkey. J Neurosci 19:401–419PubMedGoogle Scholar
  15. 15.
    Petersen CC (2007) The functional organization of the barrel cortex. Neuron 56:339–355PubMedCrossRefGoogle Scholar
  16. 16.
    Guic-Robles E, Valdivieso C, Guajardo G (1989) Rats can learn a roughness discrimination using only their vibrissal system. Behav Brain Res 31:285–289PubMedCrossRefGoogle Scholar
  17. 17.
    Carvell GE, Simons DJ (1995) Task- and subject-related differences in sensorimotor behavior during active touch. Somatosens Mot Res 12:1–9PubMedCrossRefGoogle Scholar
  18. 18.
    Krupa DJ, Matell MS, Brisben AJ, Oliveira LM, Nicolelis MA (2001) Behavioral properties of the trigeminal somatosensory system in rats performing whisker-dependent tactile discriminations. J Neurosci 21:5752–5763PubMedGoogle Scholar
  19. 19.
    Knutsen PM, Pietr M, Ahissar E (2006) Haptic object localization in the vibrissal system: behavior and performance. J Neurosci 26:8451–8464PubMedCrossRefGoogle Scholar
  20. 20.
    Towal RB, Hartmann MJ (2006) Right-left asymmetries in the whisking behavior of rats anticipate head movements. J Neurosci 26:8838–8846PubMedCrossRefGoogle Scholar
  21. 21.
    Mitchinson B, Martin CJ, Grant RA, Prescott TJ (2007) Feedback control in active sensing: rat exploratory whisking is modulated by environmental contact. Proc Biol Sci 274:1035–1041PubMedCrossRefGoogle Scholar
  22. 22.
    Stuttgen MC, Ruter J, Schwarz C (2006) Two psychophysical channels of whisker deflection in rats align with two neuronal classes of primary afferents. J Neurosci 26:7933–7941PubMedCrossRefGoogle Scholar
  23. 23.
    von Heimendahl M, Itskov PM, Arabzadeh E, Diamond ME (2007) Neuronal activity in rat barrel cortex underlying texture discrimination. PLoS Biol 5:e305CrossRefGoogle Scholar
  24. 24.
    Towal RB, Hartmann MJ (2008) Variability in velocity profiles during free-air whisking behavior of unrestrained rats. J Neurophysiol 100:740–752PubMedCrossRefGoogle Scholar
  25. 25.
    Ritt JT, Andermann ML, Moore CI (2008) Embodied information processing: vibrissa mechanics and texture features shape micromotions in actively sensing rats. Neuron 57:599–613PubMedCrossRefGoogle Scholar
  26. 26.
    Grant RA, Mitchinson B, Fox CW, Prescott TJ (2009) Active touch sensing in the rat: anticipatory and regulatory control of whisker movements during surface exploration. J Neurophysiol 101:862–874PubMedCrossRefGoogle Scholar
  27. 27.
    Hill DN, Bermejo R, Zeigler HP, Kleinfeld D (2008) Biomechanics of the vibrissa motor plant in rat: rhythmic whisking consists of triphasic neuromuscular activity. J Neurosci 28:3438–3455PubMedCrossRefGoogle Scholar
  28. 28.
    O’Connor DH, Huber D, Svoboda K (2009) Reverse engineering the mouse brain. Nature 461:923–929PubMedCrossRefGoogle Scholar
  29. 29.
    Cardin JA, Carlen M, Meletis K, Knoblich U, Zhang F, Deisseroth K, Tsai LH, Moore CI (2009) Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature 459:663–667PubMedCrossRefGoogle Scholar
  30. 30.
    Carvell GE, Simons DJ (1990) Biometric analyses of vibrissal tactile discrimination in the rat. J Neurosci 10:2638–2648PubMedGoogle Scholar
  31. 31.
    Ebara S, Kumamoto K, Matsuura T, Mazurkiewicz JE, Rice FL (2002) Similarities and differences in the innervation of mystacial vibrissal follicle-sinus complexes in the rat and cat: a confocal microscopic study. J Comp Neurol 449:103–119PubMedCrossRefGoogle Scholar
  32. 32.
    Dorfl J (1982) The musculature of the mystacial vibrissae of the white mouse. J Anat 135:147–154PubMedGoogle Scholar
  33. 33.
    Knutsen PM, Biess A, Ahissar E (2008) Vibrissal kinematics in 3D: tight coupling of azimuth, elevation, and torsion across different whisking modes. Neuron 59:35–42PubMedCrossRefGoogle Scholar
  34. 34.
    Neimark MA, Andermann ML, Hopfield JJ, Moore CI (2003) Vibrissa resonance as a transduction mechanism for tactile encoding. J Neurosci 23:6499–6509PubMedGoogle Scholar
  35. 35.
    Hartmann MJ, Johnson NJ, Towal RB, Assad C (2003) Mechanical characteristics of rat vibrissae: resonant frequencies and damping in isolated whiskers and in the awake behaving animal. J Neurosci 23:6510–6519PubMedGoogle Scholar
  36. 36.
    Mehta SB, Kleinfeld D (2004) Frisking the whiskers: patterned sensory input in the rat vibrissa system. Neuron 41:181–184PubMedCrossRefGoogle Scholar
  37. 37.
    Arabzadeh E, Zorzin E, Diamond ME (2005) Neuronal encoding of texture in the whisker sensory pathway. PLoS Biol 3:e17PubMedCrossRefGoogle Scholar
  38. 38.
    Hipp J, Arabzadeh E, Zorzin E, Conradt J, Kayser C, Diamond ME, Konig P (2006) Texture signals in whisker vibrations. J Neurophysiol 95:1792–1799PubMedCrossRefGoogle Scholar
  39. 39.
    Wolfe J, Hill DN, Pahlavan S, Drew PJ, Kleinfeld D, Feldman DE (2008) Texture coding in the rat whisker system: slip–stick versus differential resonance. PLoS Biol 6:e215PubMedCrossRefGoogle Scholar
  40. 40.
    Jadhav SP, Wolfe J, Feldman DE (2009) Sparse temporal coding of elementary tactile features during active whisker sensation. Nat Neurosci 12:792–800PubMedCrossRefGoogle Scholar
  41. 41.
    Lottem E, Azouz R (2008) Dynamic translation of surface coarseness into whisker vibrations. J Neurophysiol 100:2852–2865PubMedCrossRefGoogle Scholar
  42. 42.
    Denny M (2004) Stick–slip motion: an important example of self-excited oscillation. Eur J Phys 25:311–322CrossRefGoogle Scholar
  43. 43.
    O’Connor DH, Clack NG, Huber D, Komiyama T, Myers EW, Svoboda K (2010) Vibrissa-based object localization in head-fixed mice. J Neurosci 30:1947–1967PubMedCrossRefGoogle Scholar
  44. 44.
    Brecht M, Preilowski B, Merzenich MM (1997) Functional architecture of the mystacial vibrissae. Behav Brain Res 84:81–97PubMedCrossRefGoogle Scholar
  45. 45.
    Szwed M, Bagdasarian K, Ahissar E (2003) Encoding of vibrissal active touch. Neuron 40:621–630PubMedCrossRefGoogle Scholar
  46. 46.
    Solomon JH, Hartmann MJ (2006) Biomechanics: robotic whiskers used to sense features. Nature 443:525PubMedCrossRefGoogle Scholar
  47. 47.
    Stuttgen MC, Kullmann S, Schwarz C (2008) Responses of rat trigeminal ganglion neurons to longitudinal whisker stimulation. J Neurophysiol 100:1879–1884PubMedCrossRefGoogle Scholar
  48. 48.
    Gerdjikov TV, Bergner CG, Stuttgen MC, Waiblinger C, Schwarz C (2010) Discrimination of vibrotactile stimuli in the rat whisker system: behavior and neurometrics. Neuron 65:530–540PubMedCrossRefGoogle Scholar
  49. 49.
    Celikel T, Sakmann B (2007) Sensory integration across space and in time for decision making in the somatosensory system of rodents. Proc Natl Acad Sci USA 104:1395–1400PubMedCrossRefGoogle Scholar
  50. 50.
    Hecht E (2001) Optics. Addison WesleyGoogle Scholar
  51. 51.
    Knutsen PM, Derdikman D, Ahissar E (2005) Tracking whisker and head movements in unrestrained behaving rodents. J Neurophysiol 93:2294–2301PubMedCrossRefGoogle Scholar
  52. 52.
    Voigts J, Sakmann B, Celikel T (2008) Unsupervised whisker tracking in unrestrained behaving animals. J Neurophysiol 100: 504–515PubMedCrossRefGoogle Scholar
  53. 53.
    Hartley R, Zisserman A (2003) Multiple view geometry in computer vision, 2nd edn. Cambridge University PressGoogle Scholar
  54. 54.
    Brecht M, Schneider M, Sakmann B, Margrie TW (2004) Whisker movements evoked by stimulation of single pyramidal cells in rat motor cortex. Nature 427:704–710PubMedCrossRefGoogle Scholar
  55. 55.
    Perkon I, Kosir A, Itskov PM, Tasic J, Diamond ME (2011) Unsupervised quantification of whisking and head movement in freely moving rodents. J Neurophysiol 105:1950–1962Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Jason T. Ritt
    • 1
  1. 1.Department of Biomedical EngineeringBoston UniversityBostonUSA

Personalised recommendations