Skip to main content

Investigating Sleep Homeostasis with Extracellular Recording of Multiunit Activity from the Neocortex in Freely Behaving Rats

  • Protocol
  • First Online:
Neuronal Network Analysis

Part of the book series: Neuromethods ((NM,volume 67))

  • 1844 Accesses

Abstract

Cortical activity during sleep and waking is traditionally investigated with electroencephalography (EEG). The most distinctive feature of neocortical activity during sleep is the occurrence of EEG slow waves, arising from quasi-synchronous periods of activity and silence among cortical neurons. The EEG slow waves are regulated homeostatically: they are larger and have a higher incidence following long waking periods and decrease as a function of time spent asleep. Since intense early sleep seems to be important for restoration, understanding the cellular mechanisms underlying homeostatic regulation of sleep slow waves may appear crucial for understanding sleep function. While macrooscillations recorded with the EEG arise from synchronous activity and silence of large populations of cortical neurons, at present intracellular recording techniques do not allow monitoring the state of more than just a few cells at a time across spontaneous sleep–wake cycle in unrestrained animals. Here, we review a method for chronic recording of extracellular LFP and multiunit activity from the neocortex in freely moving rats. This technique is most useful for addressing cellular mechanisms of sleep homeostasis because it allows monitoring the activity of many cells simultaneously for many hours. The description of the surgical procedure is complemented with a detailed account of spike sorting, which is a crucial step in processing and interpreting extracellular waveforms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. MacLean JN, Watson BO, Aaron GB et al (2005) Internal dynamics determine the cortical response to thalamic stimulation. Neuron 48:811–823

    Article  PubMed  CAS  Google Scholar 

  2. Petersen CC, Hahn TT, Mehta M et al (2003) Interaction of sensory responses with spontaneous depolarization in layer 2/3 barrel cortex. Proc Natl Acad Sci USA 100:13638–13643

    Article  PubMed  CAS  Google Scholar 

  3. Sakata S, Harris KD (2009) Laminar structure of spontaneous and sensory-evoked population activity in auditory cortex. Neuron 64:404–418

    Article  PubMed  CAS  Google Scholar 

  4. Steriade M, Timofeev I, Grenier F (2001) Natural waking and sleep states: a view from inside neocortical neurons. J Neurophysiol 85:1969–1985

    PubMed  CAS  Google Scholar 

  5. Vyazovskiy VV, Olcese U, Lazimy YM et al (2009) Cortical firing and sleep homeostasis. Neuron 63:865–878

    Article  PubMed  CAS  Google Scholar 

  6. Cirelli C, Tononi G (2008) Is sleep essential? PLoS Biol 6:e216

    Article  PubMed  CAS  Google Scholar 

  7. Borbély AA, Achermann P (2005) Sleep homeostasis and models of sleep regulation. In: Kryger MH, Roth T, Dement WC (eds) Principles and practice of sleep medicine. W. B. Saunders, Philadelphia, PA, pp 405–417

    Chapter  Google Scholar 

  8. Tobler I (2005) Phylogeny of sleep regulation. In: Kryger MH, Roth T, Dement WC (eds) Principles and practice of sleep medicine. W. B. Saunders, Philadelphia, PA

    Google Scholar 

  9. Chauvette S, Volgushev M, Timofeev I (2010) Origin of active states in local neocortical networks during slow sleep oscillation. Cereb Cortex 20(11):2660–2674

    Article  PubMed  Google Scholar 

  10. Destexhe A, Contreras D, Steriade M (1999) Spatiotemporal analysis of local field potentials and unit discharges in cat cerebral cortex during natural wake and sleep states. J Neurosci 19:4595–4608

    PubMed  CAS  Google Scholar 

  11. Amzica F, Steriade M (1998) Electrophysiological correlates of sleep delta waves. Electroencephalogr Clin Neurophysiol 107:69–83

    Article  PubMed  CAS  Google Scholar 

  12. Contreras D, Steriade M (1995) Cellular basis of EEG slow rhythms: a study of dynamic corticothalamic relationships. J Neurosci 15:604–622

    PubMed  CAS  Google Scholar 

  13. Buzsáki G (2006) Rhythms of the brain. Oxford University Press, Oxford

    Book  Google Scholar 

  14. Rasch MJ, Gretton A, Murayama Y et al (2008) Inferring spike trains from local field potentials. J Neurophysiol 99:1461–1476

    Article  PubMed  Google Scholar 

  15. Lewicki MS (1998) A review of methods for spike sorting: the detection and classification of neural action potentials. Network 9:R53–R78

    Article  PubMed  CAS  Google Scholar 

  16. Shu Y, Duque A, Yu Y et al (2007) Properties of action-potential initiation in neocortical pyramidal cells: evidence from whole cell axon recordings. J Neurophysiol 97:746–760

    Article  PubMed  Google Scholar 

  17. Holt GR, Koch C (1999) Electrical interactions via the extracellular potential near cell bodies. J Comput Neurosci 6:169–184

    Article  PubMed  CAS  Google Scholar 

  18. Mitzdorf U (1985) Current source-density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena. Physiol Rev 65:37–100

    PubMed  CAS  Google Scholar 

  19. Buzsaki G (2004) Large-scale recording of neuronal ensembles. Nat Neurosci 7:446–451

    Article  PubMed  CAS  Google Scholar 

  20. Gold C, Henze DA, Koch C et al (2006) On the origin of the extracellular action potential waveform: a modeling study. J Neurophysiol 95:3113–3128

    Article  PubMed  CAS  Google Scholar 

  21. Vyazovskiy VV, Riedner BA, Cirelli C et al (2007) Sleep homeostasis and cortical synchronization: II. A local field potential study of sleep slow waves in the rat. Sleep 30:1631–1642

    PubMed  Google Scholar 

  22. Mitzdorf U (1987) Properties of the evoked potential generators: current source-density analysis of visually evoked potentials in the cat cortex. Int J Neurosci 33:33–59

    Article  PubMed  CAS  Google Scholar 

  23. Katzner S, Nauhaus I, Benucci A et al (2009) Local origin of field potentials in visual cortex. Neuron 61:35–41

    Article  PubMed  CAS  Google Scholar 

  24. Csicsvari J, Jamieson B, Wise KD et al (2003) Mechanisms of gamma oscillations in the hippocampus of the behaving rat. Neuron 37:311–322

    Article  PubMed  CAS  Google Scholar 

  25. Whittingstall K, Logothetis NK (2009) Frequency-band coupling in surface EEG reflects spiking activity in monkey visual cortex. Neuron 64:281–289

    Article  PubMed  CAS  Google Scholar 

  26. Sirota A, Montgomery S, Fujisawa S et al (2008) Entrainment of neocortical neurons and gamma oscillations by the hippocampal theta rhythm. Neuron 60:683–697

    Article  PubMed  CAS  Google Scholar 

  27. Manning JR, Jacobs J, Fried I et al (2009) Broadband shifts in local field potential power spectra are correlated with single-neuron spiking in humans. J Neurosci 29:13613–13620

    Article  PubMed  CAS  Google Scholar 

  28. Haider B, Duque A, Hasenstaub AR et al (2006) Neocortical network activity in vivo is generated through a dynamic balance of excitation and inhibition. J Neurosci 26:4535–4545

    Article  PubMed  CAS  Google Scholar 

  29. Poulet JF, Petersen CC (2008) Internal brain state regulates membrane potential synchrony in barrel cortex of behaving mice. Nature 454:881–885

    Article  PubMed  CAS  Google Scholar 

  30. Rudolph M, Pospischil M, Timofeev I et al (2007) Inhibition determines membrane potential dynamics and controls action potential generation in awake and sleeping cat cortex. J Neurosci 27:5280–5290

    Article  PubMed  CAS  Google Scholar 

  31. Okun M, Naim A, Lampl I (2010) The subthreshold relation between cortical local field potential and neuronal firing unveiled by intracellular recordings in awake rats. J Neurosci 30:4440–4448

    Article  PubMed  CAS  Google Scholar 

  32. Villablanca JR (2004) Counterpointing the functional role of the forebrain and of the brainstem in the control of the sleep-waking system. J Sleep Res 13:179–208

    Article  PubMed  Google Scholar 

  33. Jones BE (2005) From waking to sleeping: neuronal and chemical substrates. Trends Pharmacol Sci 26:578–586

    Article  PubMed  CAS  Google Scholar 

  34. Miller DB, O’Callaghan JP (2006) The pharmacology of wakefulness. Metabolism 55:S13–S19

    Article  PubMed  CAS  Google Scholar 

  35. Boutrel B, Koob GF (2004) What keeps us awake: the neuropharmacology of stimulants and wakefulness-promoting medications. Sleep 27:1181–1194

    PubMed  Google Scholar 

  36. Vyazovskiy VV, Ruijgrok G, Deboer T et al (2006) Running wheel accessibility affects the regional electroencephalogram during sleep in mice. Cereb Cortex 16:328–336

    Article  PubMed  Google Scholar 

  37. Gentet LJ, Avermann M, Matyas F et al (2010) Membrane potential dynamics of GABAergic neurons in the barrel cortex of behaving mice. Neuron 65:422–435

    Article  PubMed  CAS  Google Scholar 

  38. Sporns O, Tononi G, Edelman GM (2000) Connectivity and complexity: the relationship between neuroanatomy and brain dynamics. Neural Netw 13:909–922

    Article  PubMed  CAS  Google Scholar 

  39. Green JD, Arduini AA (1954) Hippocampal electrical activity in arousal. J Neurophysiol 17:533–557

    PubMed  CAS  Google Scholar 

  40. Petsche H, Stumpf C (1960) Topographic and toposcopic study of origin and spread of the regular synchronized arousal pattern in the rabbit. Electroencephalogr Clin Neurophysiol 12:589–600

    Article  PubMed  CAS  Google Scholar 

  41. Whishaw IQ, Vanderwolf CH (1973) Hippocampal EEG and behavior: changes in amplitude and frequency of RSA (theta rhythm) associated with spontaneous and learned movement patterns in rats and cats. Behav Biol 8:461–484

    Article  PubMed  CAS  Google Scholar 

  42. Robinson TE (1980) Hippocampal rhythmic slow activity (RSA; theta): a critical analysis of selected studies and discussion of possible species-differences. Brain Res 203:69–101

    PubMed  CAS  Google Scholar 

  43. Leung LW, Borst JG (1987) Electrical activity of the cingulate cortex. I. Generating mechanisms and relations to behavior. Brain Res 407:68–80

    Article  PubMed  CAS  Google Scholar 

  44. Murata K, Kameda K (1963) The activity of single cortical neurones of unrestrained cats during sleep and wakefulness. Arch Ital Biol 101:306–331

    PubMed  CAS  Google Scholar 

  45. Noda H, Adey WR (1973) Neuronal activity in the association cortex of the cat during sleep, wakefulness and anesthesia. Brain Res 54:243–259

    Article  PubMed  CAS  Google Scholar 

  46. Hobson JA, McCarley RW (1971) Cortical unit activity in sleep and waking. Electroencephalogr Clin Neurophysiol 30:97–112

    Article  PubMed  CAS  Google Scholar 

  47. Verzeano M, Negishi K (1960) Neuronal activity in cortical and thalamic networks. J Gen Physiol 43(6):177–195

    Article  PubMed  Google Scholar 

  48. Noda H, Adey WR (1970) Firing of neuron pairs in cat association cortex during sleep and wakefulness. J Neurophysiol 33:672–684

    PubMed  CAS  Google Scholar 

  49. Burns BD, Stean JP, Webb AC (1979) The effects of sleep on neurons in isolated cerebral cortex. Proc R Soc Lond B Biol Sci 206:281–291

    Article  PubMed  CAS  Google Scholar 

  50. Steriade M, Nunez A, Amzica F (1993) A novel slow (<1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components. J Neurosci 13:3252–3265

    PubMed  CAS  Google Scholar 

  51. Calvet J, Fourment A, Thiefry M (1973) Electrical activity in neocortical projection and association areas during slow wave sleep. Brain Res 52:173–187

    Article  PubMed  CAS  Google Scholar 

  52. Steriade M, Nunez A, Amzica F (1993) Intracellular analysis of relations between the slow (<1 Hz) neocortical oscillation and other sleep rhythms of the electroencephalogram. J Neurosci 13:3266–3283

    PubMed  CAS  Google Scholar 

  53. Ji D, Wilson MA (2007) Coordinated memory replay in the visual cortex and hippocampus during sleep. Nat Neurosci 10:100–107

    Article  PubMed  CAS  Google Scholar 

  54. Luczak A, Bartho P, Marguet SL et al (2007) Sequential structure of neocortical spontaneous activity in vivo. Proc Natl Acad Sci USA 104:347–352

    Article  PubMed  CAS  Google Scholar 

  55. Mukovski M, Chauvette S, Timofeev I et al (2007) Detection of active and silent states in neocortical neurons from the field potential signal during slow-wave sleep. Cereb Cortex 17(2):400–414

    Article  PubMed  Google Scholar 

  56. Molle M, Yeshenko O, Marshall L et al (2006) Hippocampal sharp wave-ripples linked to slow oscillations in rat slow-wave sleep. J Neurophysiol 96:62–70

    Article  PubMed  Google Scholar 

  57. Crunelli V, Hughes SW (2009) The slow (<1 Hz) rhythm of non-REM sleep: a dialogue between three cardinal oscillators. Nat Neurosci 13:9–17

    Article  PubMed  CAS  Google Scholar 

  58. Hasenstaub A, Shu Y, Haider B et al (2005) Inhibitory postsynaptic potentials carry synchronized frequency information in active cortical networks. Neuron 47:423–435

    Article  PubMed  CAS  Google Scholar 

  59. Sanchez-Vives MV, McCormick DA (2000) Cellular and network mechanisms of rhythmic recurrent activity in neocortex. Nat Neurosci 3:1027–1034

    Article  PubMed  CAS  Google Scholar 

  60. Fanselow EE, Connors BW (2010) The roles of somatostatin-expressing (GIN) and fast-spiking inhibitory interneurons in UP-DOWN states of mouse neocortex. J Neurophysiol 104:596–606

    Article  PubMed  CAS  Google Scholar 

  61. Webb AC (1976) The effects of changing levels of arousal on the spontaneous activity of cortical neurones: I. Sleep and wakefulness. Proc R Soc Lond B Biol Sci 194:225–237

    Article  PubMed  CAS  Google Scholar 

  62. Massimini M, Huber R, Ferrarelli F et al (2004) The sleep slow oscillation as a traveling wave. J Neurosci 24:6862–6870

    Article  PubMed  CAS  Google Scholar 

  63. Huber R, Deboer T, Tobler I (2000) Topography of EEG dynamics after sleep deprivation in mice. J Neurophysiol 84:1888–1893

    PubMed  CAS  Google Scholar 

  64. Huber R, Ghilardi MF, Massimini M et al (2004) Local sleep and learning. Nature 430:78–81

    Article  PubMed  CAS  Google Scholar 

  65. Vyazovskiy VV, Borbely AA, Tobler I (2002) Interhemispheric sleep EEG asymmetry in the rat is enhanced by sleep deprivation. J Neurophysiol 88:2280–2286

    Article  PubMed  Google Scholar 

  66. Vyazovskiy VV, Tobler I, Winsky-Sommerer R (2007) Alteration of behavior in mice by muscimol is associated with regional electroencephalogram synchronization. Neuroscience 147:833–841

    Article  PubMed  CAS  Google Scholar 

  67. De Gennaro L, Fratello F, Marzano C et al (2008) Cortical plasticity induced by transcranial magnetic stimulation during wakefulness affects electroencephalogram activity during sleep. PLoS One 3:e2483

    Article  PubMed  CAS  Google Scholar 

  68. Huber R, Ghilardi MF, Massimini M et al (2006) Arm immobilization causes cortical plastic changes and locally decreases sleep slow wave activity. Nat Neurosci 9:1169–1176

    Article  PubMed  CAS  Google Scholar 

  69. Krueger JM, Rector DM, Roy S et al (2008) Sleep as a fundamental property of neuronal assemblies. Nat Rev Neurosci 9:910–919

    Article  PubMed  CAS  Google Scholar 

  70. Riedner BA, Vyazovskiy VV, Huber R et al (2007) Sleep homeostasis and cortical synchronization: III. A high-density EEG study of sleep slow waves in humans. Sleep 30:1643–1657

    PubMed  Google Scholar 

  71. Tononi G, Cirelli C (2006) Sleep function and synaptic homeostasis. Sleep Med Rev 10:49–62

    Article  PubMed  Google Scholar 

  72. Vyazovskiy V, Borbely AA, Tobler I (2000) Unilateral vibrissae stimulation during waking induces interhemispheric EEG asymmetry during subsequent sleep in the rat. J Sleep Res 9:367–371

    Article  PubMed  CAS  Google Scholar 

  73. Vyazovskiy VV, Cirelli C, Pfister-Genskow M et al (2008) Molecular and electrophysiological evidence for net synaptic potentiation in wake and depression in sleep. Nat Neurosci 11:200–208

    Article  PubMed  CAS  Google Scholar 

  74. Vyazovskiy VV, Tobler I (2008) Handedness leads to interhemispheric EEG asymmetry during sleep in the rat. J Neurophysiol 99:969–975

    Article  PubMed  CAS  Google Scholar 

  75. Borbely AA (1982) A two process model of sleep regulation. Hum Neurobiol 1:195–204

    PubMed  CAS  Google Scholar 

  76. Achermann P, Borbely AA (2003) Mathematical models of sleep regulation. Front Biosci 8:s683–s693

    Article  PubMed  Google Scholar 

  77. Tobler I, Borbely AA (1986) Sleep EEG in the rat as a function of prior waking. Electroencephalogr Clin Neurophysiol 64:74–76

    Article  PubMed  CAS  Google Scholar 

  78. Cajochen C, Foy R, Dijk DJ (1999) Frontal predominance of a relative increase in sleep delta and theta EEG activity after sleep loss in humans. Sleep Res Online 2:65–69

    PubMed  CAS  Google Scholar 

  79. Oleksenko AI, Mukhametov LM, Polyakova IG et al (1992) Unihemispheric sleep deprivation in bottlenose dolphins. J Sleep Res 1:40–44

    Article  PubMed  Google Scholar 

  80. Kattler H, Dijk DJ, Borbely AA (1994) Effect of unilateral somatosensory stimulation prior to sleep on the sleep EEG in humans. J Sleep Res 3:159–164

    Article  PubMed  Google Scholar 

  81. Tononi G, Cirelli C (2003) Sleep and synaptic homeostasis: a hypothesis. Brain Res Bull 62:143–150

    Article  PubMed  Google Scholar 

  82. Hill S, Tononi G (2005) Modeling sleep and wakefulness in the thalamocortical system. J Neurophysiol 93:1671–1698

    Article  PubMed  Google Scholar 

  83. Esser SK, Hill SL, Tononi G (2007) Sleep homeostasis and cortical synchronization: I. Modeling the effects of synaptic strength on sleep slow waves. Sleep 30:1617–1630

    PubMed  Google Scholar 

  84. Schwartz AB, Cui XT, Weber DJ et al (2006) Brain-controlled interfaces: movement restoration with neural prosthetics. Neuron 52:205–220

    Article  PubMed  CAS  Google Scholar 

  85. Nelson MJ, Pouget P (2010) Do electrode properties create a problem in interpreting local field potential recordings? J Neurophysiol 103:2315–2317

    Article  PubMed  Google Scholar 

  86. Kralik JD, Dimitrov DF, Krupa DJ et al (2001) Techniques for long-term multisite neuronal ensemble recordings in behaving animals. Methods 25:121–150

    Article  PubMed  CAS  Google Scholar 

  87. Spataro L, Dilgen J, Retterer S et al (2005) Dexamethasone treatment reduces astroglia responses to inserted neuroprosthetic devices in rat neocortex. Exp Neurol 194:289–300

    Article  PubMed  CAS  Google Scholar 

  88. Zhong Y, Bellamkonda RV (2007) Dexamethasone-coated neural probes elicit attenuated inflammatory response and neuronal loss compared to uncoated neural probes. Brain Res 1148:15–27

    Article  PubMed  CAS  Google Scholar 

  89. Hanlon EC, Faraguna U, Vyazovskiy VV et al (2009) Effects of skilled training on sleep slow wave activity and cortical gene expression in the rat. Sleep 32:719–729

    PubMed  Google Scholar 

  90. Huber R, Tononi G, Cirelli C (2007) Exploratory behavior, cortical BDNF expression, and sleep homeostasis. Sleep 30:129–139

    PubMed  Google Scholar 

  91. Lemon R, Prochazka A (1984) Methods for neuronal recording in conscious animals. Wiley, Chichester

    Google Scholar 

  92. Nicolelis MAL (2008) Methods for neural ensemble recordings, 2nd edn. CRC Press, Boca Raton, FL

    Google Scholar 

  93. Hulata E, Segev R, Ben-Jacob E (2002) A method for spike sorting and detection based on wavelet packets and Shannon’s mutual information. J Neurosci Methods 117:1–12

    Article  PubMed  Google Scholar 

  94. Quiroga RQ, Nadasdy Z, Ben-Shaul Y (2004) Unsupervised spike detection and sorting with wavelets and superparamagnetic clustering. Neural Comput 16:1661–1687

    Article  PubMed  Google Scholar 

  95. Tolias AS, Ecker AS, Siapas AG et al (2007) Recording chronically from the same neurons in awake, behaving primates. J Neurophysiol 98:3780–3790

    Article  PubMed  Google Scholar 

  96. Zhang PM, Wu JY, Zhou Y et al (2004) Spike sorting based on automatic template reconstruction with a partial solution to the overlapping problem. J Neurosci Methods 135:55–65

    Article  PubMed  Google Scholar 

  97. Jolliffe IT (2002) Principal component analysis, 2nd edn. Springer, New York, NY

    Google Scholar 

  98. Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 134:9–21

    Article  PubMed  Google Scholar 

  99. Tan P-N, Steinbach M, Kumar V (2006) Introduction to data mining, 1st edn. Pearson Addison Wesley, Boston, MA

    Google Scholar 

  100. Wood F, Black MJ, Vargas-Irwin C et al (2004) On the variability of manual spike sorting. IEEE Trans Biomed Eng 51:912–918

    Article  PubMed  Google Scholar 

  101. Hartigan JA (1975) Clustering algorithms. Wiley, New York, NY

    Google Scholar 

  102. Bezdek JC, Ehrlich R, Full W (1984) Fcm—the fuzzy C-means clustering-algorithm. Comput Geosci 10:191–203

    Article  Google Scholar 

  103. Bishop CM (2006) Pattern recognition and machine learning. Springer, New York, NY

    Google Scholar 

  104. Ueda N, Nakano R, Ghahramani Z et al (2000) SMEM algorithm for mixture models. Neural Comput 12:2109–2128

    Article  PubMed  CAS  Google Scholar 

  105. Davies DL, Bouldin DW (1979) Cluster Separation Measure. IEEE Trans Pattern Anal Mach Intell 1:224–227

    Article  PubMed  CAS  Google Scholar 

  106. Connors BW, Gutnick MJ (1990) Intrinsic firing patterns of diverse neocortical neurons. Trends Neurosci 13:99–104

    Article  PubMed  CAS  Google Scholar 

  107. Kawaguchi Y, Kubota Y (1997) GABAergic cell subtypes and their synaptic connections in rat frontal cortex. Cereb Cortex 7:476–486

    Article  PubMed  CAS  Google Scholar 

  108. Bartho P, Hirase H, Monconduit L et al (2004) Characterization of neocortical principal cells and interneurons by network interactions and extracellular features. J Neurophysiol 92:600–608

    Article  PubMed  Google Scholar 

  109. Bruno RM, Simons DJ (2002) Feedforward mechanisms of excitatory and inhibitory cortical receptive fields. J Neurosci 22:10966–10975

    PubMed  CAS  Google Scholar 

  110. McCormick DA, Connors BW, Lighthall JW et al (1985) Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. J Neurophysiol 54:782–806

    PubMed  CAS  Google Scholar 

  111. Gray CM, McCormick DA (1996) Chattering cells: superficial pyramidal neurons contributing to the generation of synchronous oscillations in the visual cortex. Science 274:109–113

    Article  PubMed  CAS  Google Scholar 

  112. Diaz-Mataix L, Artigas F, Celada P (2006) Activation of pyramidal cells in rat medial prefrontal cortex projecting to ventral tegmental area by a 5-HT1A receptor agonist. Eur Neuropsychopharmacol 16:288–296

    Article  PubMed  CAS  Google Scholar 

  113. Diester I, Nieder A (2008) Complementary contributions of prefrontal neuron classes in abstract numerical categorization. J Neurosci 28:7737–7747

    Article  PubMed  CAS  Google Scholar 

  114. Gonzalez-Burgos G, Krimer LS, Povysheva NV et al (2005) Functional properties of fast spiking interneurons and their synaptic connections with pyramidal cells in primate dorsolateral prefrontal cortex. J Neurophysiol 93:942–953

    Article  PubMed  Google Scholar 

  115. Jung MW, Qin Y, McNaughton BL et al (1998) Firing characteristics of deep layer neurons in prefrontal cortex in rats performing spatial working memory tasks. Cereb Cortex 8:437–450

    Article  PubMed  CAS  Google Scholar 

  116. Mallet N, Le Moine C, Charpier S et al (2005) Feedforward inhibition of projection neurons by fast-spiking GABA interneurons in the rat striatum in vivo. J Neurosci 25:3857–3869

    Article  PubMed  CAS  Google Scholar 

  117. Povysheva NV, Gonzalez-Burgos G, Zaitsev AV et al (2006) Properties of excitatory synaptic responses in fast-spiking interneurons and pyramidal cells from monkey and rat prefrontal cortex. Cereb Cortex 16:541–552

    Article  PubMed  CAS  Google Scholar 

  118. Puig MV, Ushimaru M, Kawaguchi Y (2008) Two distinct activity patterns of fast-spiking interneurons during neocortical UP states. Proc Natl Acad Sci USA 105(24):8428–8433

    Article  PubMed  CAS  Google Scholar 

  119. Tierney PL, Degenetais E, Thierry AM et al (2004) Influence of the hippocampus on interneurons of the rat prefrontal cortex. Eur J Neurosci 20:514–524

    Article  PubMed  Google Scholar 

  120. Tseng KY, Mallet N, Toreson KL et al (2006) Excitatory response of prefrontal cortical fast-spiking interneurons to ventral tegmental area stimulation in vivo. Synapse 59:412–417

    Article  PubMed  CAS  Google Scholar 

  121. Valenti O, Grace AA (2009) Entorhinal cortex inhibits medial prefrontal cortex and modulates the activity states of electrophysiologically characterized pyramidal neurons in vivo. Cereb Cortex 19(3):658–674

    Article  PubMed  Google Scholar 

  122. Kole MH, Letzkus JJ, Stuart GJ (2007) Axon initial segment Kv1 channels control axonal action potential waveform and synaptic efficacy. Neuron 55:633–647

    Article  PubMed  CAS  Google Scholar 

  123. Pattle RE (1971) The external action potential of a nerve or muscle fibre in an extended medium. Phys Med Biol 16:673–685

    Article  Google Scholar 

  124. Richerson S, Ingram M, Perry D et al (2005) Classification of the extracellular fields produced by activated neural structures. Biomed Eng Online 4:53

    Article  PubMed  Google Scholar 

  125. Schwartz AB (2004) Cortical neural prosthetics. Annu Rev Neurosci 27:487–507

    Article  PubMed  CAS  Google Scholar 

  126. Polikov VS, Tresco PA, Reichert WM (2005) Response of brain tissue to chronically implanted neural electrodes. J Neurosci Methods 148:1–18

    Article  PubMed  Google Scholar 

  127. Biran R, Martin DC, Tresco PA (2005) Neuronal cell loss accompanies the brain tissue response to chronically implanted silicon microelectrode arrays. Exp Neurol 195:115–126

    Article  PubMed  CAS  Google Scholar 

  128. Turner JN, Shain W, Szarowski DH et al (1999) Cerebral astrocyte response to micromachined silicon implants. Exp Neurol 156:33–49

    Article  PubMed  CAS  Google Scholar 

  129. Greenberg PA, Wilson FA (2004) Functional stability of dorsolateral prefrontal neurons. J Neurophysiol 92:1042–1055

    Article  PubMed  Google Scholar 

  130. Nicolelis MA, Dimitrov D, Carmena JM et al (2003) Chronic, multisite, multielectrode recordings in macaque monkeys. Proc Natl Acad Sci USA 100:11041–11046

    Article  PubMed  CAS  Google Scholar 

  131. Greenberg PA, Wilson FAW (2004) Functional stability of dorsolateral prefrontal neurons. J Neurophysiol 92:1042–1055

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Vyazovskiy, V.V., Olcese, U., Tononi, G. (2011). Investigating Sleep Homeostasis with Extracellular Recording of Multiunit Activity from the Neocortex in Freely Behaving Rats. In: Fellin, T., Halassa, M. (eds) Neuronal Network Analysis. Neuromethods, vol 67. Humana Press. https://doi.org/10.1007/7657_2011_22

Download citation

  • DOI: https://doi.org/10.1007/7657_2011_22

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-632-6

  • Online ISBN: 978-1-61779-633-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics