Skip to main content

Targeting Glioma Cancer Cells with Fluorescent Nanodiamonds via Integrin Receptors

  • Protocol
  • First Online:
Integrin Targeting Systems for Tumor Diagnosis and Therapy

Abstract

Glioblastomas, aggressive and highly vascularized brain tumors, overexpress αvβ3 integrins, which are widely exploited for cancer diagnostics and therapy. Proteins and peptides containing the RGD sequence bind αvβ3 integrins. Here, we describe detailed protocols for preparation and testing of fluorescent nanodiamonds coated with a biocompatible N-(2-hydroxypropyl)methacrylamide copolymer shell. When the surface of these particles was modified with a cyclic RGD peptide, they selectively targeted integrin αvβ3 receptors on U-87 MG glioblastoma cells with high internalization efficacy. The modified particles enabled background-free near-infrared imaging of cells, showed excellent colloidal stability in culture media, and exhibited negligible cytotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Resch-Genger U, Grabolle M, Cavaliere-Jaricot S et al (2008) Quantum dots versus organic dyes as fluorescent labels. Nat Methods 5:763–775

    Article  CAS  PubMed  Google Scholar 

  2. Bardhan R, Lal S, Joshi A, Halas NJ (2011) Theranostic nanoshells: from probe design to imaging and treatment of cancer. Acc Chem Res 44:936–946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Das M, Mohanty C, Sahoo SK (2009) Ligand-based targeted therapy for cancer tissue. Expert Opin Drug Deliv 6:285–304

    Article  CAS  PubMed  Google Scholar 

  4. Delehanty JB, Boeneman K, Bradburne CE et al (2010) Peptides for specific intracellular delivery and targeting of nanoparticles: implications for developing nanoparticle-mediated drug delivery. Ther Deliv 1:411–433

    Article  CAS  PubMed  Google Scholar 

  5. Hersel U, Dahmen C, Kessler H (2003) RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials 24:4385–4415

    Article  CAS  PubMed  Google Scholar 

  6. Liu S (2006) Radiolabeled multimeric cyclic RGD peptides as integrin αv β3 targeted radiotracers for tumor imaging. Mol Pharm 3:472–487

    Article  CAS  PubMed  Google Scholar 

  7. Ruoslahti E (2012) Peptides as targeting elements and tissue penetration devices for nanoparticles. Adv Mater 24:3747–3756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Schottelius M, Wester H-J (2009) Molecular imaging targeting peptide receptors. Methods 48:161–177

    Article  CAS  PubMed  Google Scholar 

  9. Danhier F, Breton AL, Préat V (2012) RGD-based strategies to target alpha(v) beta(3) integrin in cancer therapy and diagnosis. Mol Pharm 9:2961–2973

    Article  CAS  PubMed  Google Scholar 

  10. Hynes RO (1992) Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69:11–25

    Article  CAS  PubMed  Google Scholar 

  11. Liu S (2009) Radiolabeled cyclic RGD peptides as integrin αvβ3-targeted radiotracers: maximizing binding affinity via bivalency. Bioconjug Chem 20:2199–2213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ruoslahti E (1996) RGD and other recognition sequences for integrins. Annu Rev Cell Dev Biol 12:697–715

    Article  CAS  PubMed  Google Scholar 

  13. Ruoslahti E, Pierschbacher MD (1987) New perspectives in cell adhesion: RGD and integrins. Science 238:491–497

    Article  CAS  PubMed  Google Scholar 

  14. Ruoslahti E, Bhatia SN, Sailor MJ (2010) Targeting of drugs and nanoparticles to tumors. J Cell Biol 188:759–768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu Z, Wang F, Chen X (2008) Integrin αvβ3-targeted cancer therapy. Drug Dev Res 69:329–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Temming K, Schiffelers RM, Molema G, Kok RJ (2005) RGD-based strategies for selective delivery of therapeutics and imaging agents to the tumour vasculature. Drug Resist Updat 8:381–402

    Article  CAS  PubMed  Google Scholar 

  17. Kozák O, Sudolská M, Pramanik G et al (2016) Photoluminescent carbon nanostructures. Chem Mater 28:4085–4128

    Article  Google Scholar 

  18. Weissleder R, Ntziachristos V (2003) Shedding light onto live molecular targets. Nat Med 9:123–128

    Article  CAS  PubMed  Google Scholar 

  19. Gruber A, Dräbenstedt A, Tietz C et al (1997) Scanning confocal optical microscopy and magnetic resonance on single defect centers. Science 276:2012–2014

    Article  CAS  Google Scholar 

  20. Tisler J, Reuter R, Lämmle A et al (2011) Highly efficient FRET from a single nitrogen-vacancy center in nanodiamonds to a single organic molecule. ACS Nano 5:7893–7898

    Article  CAS  PubMed  Google Scholar 

  21. Shi X, Tu Y, Liu X et al (2013) Photobleaching of quantum dots by non-resonant light. Phys Chem Chem Phys 15:3130–3132

    Article  CAS  PubMed  Google Scholar 

  22. Parak WJ, Pellegrino T, Plank C (2005) Labelling of cells with quantum dots. Nanotechnology 16:R9–R25

    Article  CAS  PubMed  Google Scholar 

  23. Balasubramanian G, Chan IY, Kolesov R et al (2008) Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature 455:648–651

    Article  CAS  PubMed  Google Scholar 

  24. Maze JR, Stanwix PL, Hodges JS et al (2008) Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature 455:644–647

    Article  CAS  PubMed  Google Scholar 

  25. Laraoui A, Hodges JS, Meriles CA (2012) Nitrogen-vacancy-assisted magnetometry of paramagnetic centers in an individual diamond nanocrystal. Nano Lett 12:3477–3482

    Article  CAS  PubMed  Google Scholar 

  26. Dolde F, Fedder H, Doherty MW et al (2011) Electric-field sensing using single diamond spins. Nat Phys 7:459–463

    Article  CAS  Google Scholar 

  27. Petrakova V, Rehor I, Stursa J et al (2015) Charge-sensitive fluorescent nanosensors created from nanodiamonds. Nanoscale 7:12307–12311

    Article  CAS  PubMed  Google Scholar 

  28. Petrakova V, Benson V, Buncek M et al (2016) Imaging of transfection and intracellular release of intact, non-labeled DNA using fluorescent nanodiamonds. Nanoscale 8:12002–12012

    Article  CAS  PubMed  Google Scholar 

  29. Havlik J, Raabova H, Gulka M et al (2016) Benchtop fluorination of fluorescent nanodiamonds on a preparative scale: toward unusually hydrophilic bright particles. Adv Funct Mater 26(23):4134–4142. doi:10.1002/adfm.201504857

    Article  CAS  Google Scholar 

  30. Petrakova V, Nesladek M, Taylor A et al (2011) Luminescence properties of engineered nitrogen vacancy centers in a close surface proximity. Phys Status Solidi A 208:2051–2056

    Article  CAS  Google Scholar 

  31. Rendler T, Neburkova J, Zemek O et al (2017) Optical imaging of localized chemical events using programmable diamond quantum nanosensors. Nat Commun 8:14701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wu T-J, Tzeng Y-K, Chang W-W et al (2013) Tracking the engraftment and regenerative capabilities of transplanted lung stem cells using fluorescent nanodiamonds. Nat Nanotechnol 8:682–689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mohan N, Chen C-S, Hsieh H-H et al (2010) In vivo imaging and toxicity assessments of fluorescent nanodiamonds in Caenorhabditis elegans. Nano Lett 10:3692–3699

    Article  CAS  PubMed  Google Scholar 

  34. Slegerova J, Hajek M, Rehor I et al (2015) Designing the nanobiointerface of fluorescent nanodiamonds: highly selective targeting of glioma cancer cells. Nanoscale 7:415–420

    Article  CAS  PubMed  Google Scholar 

  35. Chow EK, Zhang X-Q, Chen M et al (2011) Nanodiamond therapeutic delivery agents mediate enhanced chemoresistant tumor treatment. Sci Transl Med 3:73ra21

    Article  PubMed  Google Scholar 

  36. Alhaddad A, Adam M-P, Botsoa J et al (2011) Nanodiamond as a vector for siRNA delivery to Ewing sarcoma cells. Small 7:3087–3095

    Article  CAS  PubMed  Google Scholar 

  37. Zhao L, Xu Y-H, Qin H et al (2014) Platinum on nanodiamond: a promising prodrug conjugated with stealth polyglycerol, targeting peptide and acid-responsive antitumor drug. Adv Funct Mater 24:5348–5357

    Article  CAS  Google Scholar 

  38. Rehor I, Lee KL, Chen K et al (2015) Plasmonic nanodiamonds: targeted core–shell type nanoparticles for cancer cell thermoablation. Adv Healthc Mater 4:460–468

    Article  CAS  PubMed  Google Scholar 

  39. Rehor I, Slegerova J, Havlik J et al (2016) Nanodiamonds: behavior in biological systems and emerging bioapplications. In: Zhang M, Naik RR, Dai L (eds) Carbon nanomaterial biomedical application. Springer International Publishing, Cham, pp 319–361

    Chapter  Google Scholar 

  40. Slegerova J, Rehor I, Havlik J et al (2014) Nanodiamonds as intracellular probes for imaging in biology and medicine. In: Prokop A, Iwasaki Y, Harada A (eds) Intracellular delivery II. Springer, Dordrecht, pp 363–401

    Chapter  Google Scholar 

  41. Weng M-F, Chiang S-Y, Wang N-S, Niu H (2009) Fluorescent nanodiamonds for specifically targeted bioimaging: application to the interaction of transferrin with transferrin receptor. Diam Relat Mater 18:587–591

    Article  CAS  Google Scholar 

  42. Zhang B, Li Y, Fang C-Y et al (2009) Receptor-mediated cellular uptake of folate-conjugated fluorescent nanodiamonds: a combined ensemble and single-particle study. Small 5:2716–2721

    Article  CAS  PubMed  Google Scholar 

  43. Dahoumane SA, Nguyen MN, Thorel A et al (2009) Protein-functionalized hairy diamond nanoparticles. Langmuir 25:9633–9638

    Article  CAS  PubMed  Google Scholar 

  44. Rehor I, Slegerova J, Kucka J et al (2014) Fluorescent nanodiamonds embedded in biocompatible translucent shells. Small 10:1106–1115

    Article  CAS  PubMed  Google Scholar 

  45. Neburkova J, Vavra J, Cigler P (2017) Coating nanodiamonds with biocompatible shells for applications in biology and medicine. Curr Opin Solid State Mater Sci 21(1):43–53

    Article  CAS  Google Scholar 

  46. Boudou J-P, David M-O, Joshi V et al (2013) Hyperbranched polyglycerol modified fluorescent nanodiamond for biomedical research. Diam Relat Mater 38:131–138

    Article  CAS  Google Scholar 

  47. Zhao L, Takimoto T, Ito M et al (2011) Chromatographic separation of highly soluble diamond nanoparticles prepared by polyglycerol grafting. Angew Chem Int Ed 50:1388–1392

    Article  CAS  Google Scholar 

  48. Rehor I, Mackova H, Filippov SK et al (2014) Fluorescent nanodiamonds with bioorthogonally reactive protein-resistant polymeric coatings. Chem Plus Chem 79:21–24

    CAS  PubMed  Google Scholar 

  49. Takimoto T, Chano T, Shimizu S et al (2010) Preparation of fluorescent diamond nanoparticles stably dispersed under a physiological environment through multistep organic transformations. Chem Mater 22:3462–3471

    Article  CAS  Google Scholar 

  50. Lee JW, Lee S, Jang S et al (2013) Preparation of non-aggregated fluorescent nanodiamonds (FNDs) by non-covalent coating with a block copolymer and proteins for enhancement of intracellular uptake. Mol BioSyst 9:1004–1011

    Article  CAS  PubMed  Google Scholar 

  51. Man HB, Lam R, Chen M et al (2012) Nanodiamond-therapeutic complexes embedded within poly(ethylene glycol) diacrylate hydrogels mediating sequential drug elution. Phys Status Solidi A 209:1811–1818

    Article  CAS  Google Scholar 

  52. Marcon L, Kherrouche Z, Lyskawa J et al (2011) Preparation and characterization of Zonyl-coated nanodiamonds with antifouling properties. Chem Commun 47:5178–5180

    Article  CAS  Google Scholar 

  53. Kopecek J (2013) Polymer–drug conjugates: origins, progress to date and future directions. Adv Drug Deliv Rev 65:49–59

    Article  CAS  PubMed  Google Scholar 

  54. Iinuma H, Maruyama K, Okinaga K et al (2002) Intracellular targeting therapy of cisplatin-encapsulated transferrin-polyethylene glycol liposome on peritoneal dissemination of gastric cancer. Int J Cancer 99:130–137

    Article  CAS  PubMed  Google Scholar 

  55. Hong V, Presolski SI, Ma C, Finn MG (2009) Analysis and optimization of copper-catalyzed azide-alkyne cycloaddition for bioconjugation. Angew Chem Int Ed 48:9879–9883

    Article  CAS  Google Scholar 

  56. Lallana E, Sousa-Herves A, Fernandez-Trillo F et al (2012) Click chemistry for drug delivery nanosystems. Pharm Res 29:1–34

    Article  CAS  PubMed  Google Scholar 

  57. Desgrosellier JS, Cheresh DA (2010) Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer 10:9–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Carboni B, Benalil A, Vaultier M (1993) Aliphatic amino azides as key building blocks for efficient polyamine syntheses. J Org Chem 58:3736–3741

    Article  CAS  Google Scholar 

  59. Havlik J, Petrakova V, Rehor I et al (2013) Boosting nanodiamond fluorescence: towards development of brighter probes. Nanoscale 5:3208–3211

    Article  CAS  PubMed  Google Scholar 

  60. Stursa J, Havlik J, Petrakova V et al (2016) Mass production of fluorescent nanodiamonds with a narrow emission intensity distribution. Carbon 96:812–818

    Article  CAS  Google Scholar 

  61. Rehor I, Cigler P (2014) Precise estimation of HPHT nanodiamond size distribution based on transmission electron microscopy image analysis. Diam Relat Mater 46:21–24

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Czech Science Foundation project Nr. 16-16336S (to J.N. and P.C.) and Nr. 16-03156S (to M.H.). Irradiations were performed at the CANAM infrastructure of the NPI CAS Rez supported through MŠMT project No. LM2011019. Imaging was performed on confocal microscope supported by Project NPU I, LO 1302 from the Ministry of Education, Youth and Sports of the Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Cigler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Neburkova, J. et al. (2017). Targeting Glioma Cancer Cells with Fluorescent Nanodiamonds via Integrin Receptors. In: Patsenker, E. (eds) Integrin Targeting Systems for Tumor Diagnosis and Therapy. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/7653_2017_68

Download citation

  • DOI: https://doi.org/10.1007/7653_2017_68

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7443-6

  • Online ISBN: 978-1-4939-7445-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics