Skip to main content

Isolation and Identification of Murine Bone Marrow-Derived Macrophages and Osteomacs from Neonatal and Adult Mice

  • Protocol
  • First Online:
Stem Cell Niche

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2002))

Abstract

Hematopoietic stem cells (HSCs) are regulated by multiple components of the hematopoietic niche, including bone marrow-derived macrophages and osteomacs. However, both macrophages and osteomacs are phenotypically similar. Thus, specific phenotypic markers are required to differentially identify the effects of osteomacs and bone marrow macrophages on different physiological processes, including hematopoiesis and bone remodeling. Here, we describe a protocol for isolation of murine bone marrow-derived macrophages and osteomacs from neonatal and adult mice and subsequent identification by multi-parametric flow cytometry using an 8-color antibody panel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ginhoux F, Schultze JL, Murray PJ, Ochando J, Biswas SK (2016) New insights into the multidimensional concept of macrophage ontogeny, activation and function. Nat Immunol 17(1):34–40. https://doi.org/10.1038/ni.3324

    Article  CAS  PubMed  Google Scholar 

  2. Ludin A, Itkin T, Gur-Cohen S, Mildner A, Shezen E, Golan K, Kollet O, Kalinkovich A, Porat Z, D’Uva G, Schajnovitz A, Voronov E, Brenner DA, Apte RN, Jung S, Lapidot T (2012) Monocytes-macrophages that express alpha-smooth muscle actin preserve primitive hematopoietic cells in the bone marrow. Nat Immunol 13(11):1072–1082. https://doi.org/10.1038/ni.2408

    Article  CAS  PubMed  Google Scholar 

  3. Mohamad SF, Xu L, Ghosh J, Childress PJ, Abeysekera I, Himes ER, Wu H, Alvarez MB, Davis KM, Aguilar-Perez A, Hong JM, Bruzzaniti A, Kacena MA, Srour EF (2017) Osteomacs interact with megakaryocytes and osteoblasts to regulate murine hematopoietic stem cell function. Blood Adv 1(26):2520–2528. https://doi.org/10.1182/bloodadvances.2017011304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Alexander KA, Chang MK, Maylin ER, Kohler T, Muller R, Wu AC, Van Rooijen N, Sweet MJ, Hume DA, Raggatt LJ, Pettit AR (2011) Osteal macrophages promote in vivo intramembranous bone healing in a mouse tibial injury model. J Bone Miner Res 26(7):1517–1532. https://doi.org/10.1002/jbmr.354

    Article  CAS  PubMed  Google Scholar 

  5. Winkler IG, Sims NA, Pettit AR, Barbier V, Nowlan B, Helwani F, Poulton IJ, van Rooijen N, Alexander KA, Raggatt LJ, Levesque JP (2010) Bone marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion mobilizes HSCs. Blood 116(23):4815–4828. https://doi.org/10.1182/blood-2009-11-253534

    Article  CAS  Google Scholar 

  6. Bowen MA, Aruffo A (1999) Adhesion molecules, their receptors, and their regulation: analysis of CD6-activated leukocyte cell adhesion molecule (ALCAM/CD166) interactions. Transplant Proc 31(1–2):795–796

    Article  CAS  Google Scholar 

  7. Chitteti BR, Bethel M, Kacena MA, Srour EF (2013) CD166 and regulation of hematopoiesis. Curr Opin Hematol 20(4):273–280. https://doi.org/10.1097/MOH.0b013e32836060a9

    Article  CAS  PubMed  Google Scholar 

  8. Swart GW (2002) Activated leukocyte cell adhesion molecule (CD166/ALCAM): developmental and mechanistic aspects of cell clustering and cell migration. Eur J Cell Biol 81(6):313–321. https://doi.org/10.1078/0171-9335-00256

    Article  CAS  PubMed  Google Scholar 

  9. Chitteti BR, Cheng YH, Kacena MA, Srour EF (2013) Hierarchical organization of osteoblasts reveals the significant role of CD166 in hematopoietic stem cell maintenance and function. Bone 54(1):58–67. https://doi.org/10.1016/j.bone.2013.01.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chitteti BR, Kobayashi M, Cheng Y, Zhang H, Poteat BA, Broxmeyer HE, Pelus LM, Hanenberg H, Zollman A, Kamocka MM, Carlesso N, Cardoso AA, Kacena MA, Srour EF (2014) CD166 regulates human and murine hematopoietic stem cells and the hematopoietic niche. Blood 124(4):519–529. https://doi.org/10.1182/blood-2014-03-565721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mair F, Prlic M (2018) OMIP-044: 28-color immunophenotyping of the human dendritic cell compartment. Cytometry A 93(4):402–405. https://doi.org/10.1002/cyto.a.23331

    Article  PubMed  Google Scholar 

  12. Staser KW, Eades W, Choi J, Karpova D, DiPersio JF (2018) OMIP-042: 21-color flow cytometry to comprehensively immunophenotype major lymphocyte and myeloid subsets in human peripheral blood. Cytometry A 93(2):186–189. https://doi.org/10.1002/cyto.a.23303

    Article  PubMed  Google Scholar 

  13. Autengruber A, Gereke M, Hansen G, Hennig C, Bruder D (2012) Impact of enzymatic tissue disintegration on the level of surface molecule expression and immune cell function. Eur J Microbiol Immunol (Bp) 2(2):112–120. https://doi.org/10.1556/EuJMI.2.2012.2.3

    Article  CAS  Google Scholar 

  14. McCabe A, MacNamara KC (2016) Macrophages: key regulators of steady-state and demand-adapted hematopoiesis. Exp Hematol 44(4):213–222. https://doi.org/10.1016/j.exphem.2016.01.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wu AC, Raggatt LJ, Alexander KA, Pettit AR (2013) Unraveling macrophage contributions to bone repair. Bonekey Rep 2:373. https://doi.org/10.1038/bonekey.2013.107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank Indiana University Melvin and Bren Simon Cancer Center Flow Cytometry Resource Facility (FCRF) for their outstanding technical help and support. FCRF is partially funded by National Cancer Institute grant P30 CA082709 and National Institute of Diabetes and Digestive and Kidney Diseases grant U54 DK106846. We also thank the support of the NIH instrumentation grant 1S10D012270 for partial funding of the FCRF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joydeep Ghosh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media New York

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ghosh, J., Mohamad, S.F., Srour, E.F. (2018). Isolation and Identification of Murine Bone Marrow-Derived Macrophages and Osteomacs from Neonatal and Adult Mice. In: Turksen, K. (eds) Stem Cell Niche. Methods in Molecular Biology, vol 2002. Humana, New York, NY. https://doi.org/10.1007/7651_2018_196

Download citation

  • DOI: https://doi.org/10.1007/7651_2018_196

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9507-3

  • Online ISBN: 978-1-4939-9508-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics