Skip to main content

Three-Dimensional Co-culture of Human Hematopoietic Stem/Progenitor Cells and Mesenchymal Stem/Stromal Cells in a Biomimetic Hematopoietic Niche Microenvironment

  • Protocol
  • First Online:
Stem Cell Niche

Abstract

The development of cellular therapies to treat hematological malignancies has motivated researchers to investigate ex vivo culture systems capable of expanding the number of hematopoietic stem/progenitor cells (HSPC) before transplantation. The strategies exploited to achieve relevant cell numbers have relied on culture systems that lack biomimetic niche cues thought to be essential to promote HSPC maintenance and proliferation. Although stromal cells adhered to 2-D surfaces can be used to support the expansion of HSPC ex vivo, culture systems aiming to incorporate cell–cell interactions in a more intricate 3-D environment can better contribute to recapitulate the bone marrow (BM) hematopoietic niche in vitro.

Herein, we describe the development of a 3-D co-culture system of human umbilical cord blood (UCB)-derived CD34+ cells and BM mesenchymal stem/stromal cell (MSC) spheroids in a microwell-based platform that allows to attain large numbers of spheroids with uniform sizes. Further comparison with a traditional 2-D co-culture system exploiting the supportive features of feeder layers of MSC is provided, while functional in vitro assays to assess the features of HSPC expanded in the 2-D vs. 3-D MSC co-culture systems are suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schofield R (1978) The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 4:7–25

    CAS  Google Scholar 

  2. Méndez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, MacArthur BD, Lira SA et al (2010) Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466(7308):829–834

    Article  Google Scholar 

  3. Walenda T, Bork S, Horn P, Wein F, Saffrich R, Diehlmann A et al (2010) Co-culture with mesenchymal stromal cells increases proliferation and maintenance of haematopoietic progenitor cells. J Cell Mol Med 14(1–2):337–350

    Article  CAS  Google Scholar 

  4. Ema H, Takano H, Sudo K, Nakauchi H (2000) In vitro self-renewal division of hematopoietic stem cells. J Exp Med 192(9):1281–1288

    Article  CAS  Google Scholar 

  5. Zandstra PW, Conneally E, Petzer AL, Piret JM, Eaves CJ (1997) Cytokine manipulation of primitive human hematopoietic cell self-renewal. Proc Natl Acad Sci 94(9):4698–4703

    Article  CAS  Google Scholar 

  6. Hosokawa K, Arai F, Yoshihara H, Iwasaki H, Nakamura Y, Gomei Y et al (2010) Knockdown of N-cadherin suppresses the long-term engraftment of hematopoietic stem cells. Blood 116(4):554–563

    Article  CAS  Google Scholar 

  7. Wein F, Pietsch L, Saffrich R, Wuchter P, Walenda T, Bork S et al (2010) N-cadherin is expressed on human hematopoietic progenitor cells and mediates interaction with human mesenchymal stromal cells. Stem Cell Res 4(2):129–139

    Article  CAS  Google Scholar 

  8. Nakamura-Ishizu A, Okuno Y, Omatsu Y, Okabe K, Morimoto J, Uede T et al (2012) Extracellular matrix protein tenascin-C is required in the bone marrow microenvironment primed for hematopoietic regeneration. Blood 119(23):5429–5437

    Article  CAS  Google Scholar 

  9. Nilsson SK, Johnston HM, Whitty GA, Williams B, Webb RJ, Dernhardt DT et al (2005) Osteopontin, a key component of the hematopoietic stem cell niche and regulator of primitive hematopoietic progenitor cells. Blood 106(4):1232–1239

    Article  CAS  Google Scholar 

  10. Jing D, Fonseca A-V, Alakel N, Fierro FA, Muller K, Bornhauser M et al (2010) Hematopoietic stem cells in co-culture with mesenchymal stromal cells—modeling the niche compartments in vitro. Haematologica 95(4):542–550

    Article  CAS  Google Scholar 

  11. Cook MM, Futrega K, Osiecki M, Kabiri M, Kul B, Rice A et al (2012) Micromarrows—three-dimensional coculture of hematopoietic stem cells and mesenchymal stromal cells. Tissue Eng Part C Methods 18(5):319–328

    Article  CAS  Google Scholar 

  12. Futrega K, Atkinson K, Lott WB, Doran MR (2017) Spheroid coculture of hematopoietic stem/progenitor cells and monolayer expanded mesenchymal stem/stromal cells in polydimethylsiloxane microwells modestly improves in vitro hematopoietic stem/progenitor cell expansion. Tissue Eng Part C Methods 23(4):200–218

    Article  CAS  Google Scholar 

  13. Isern J, Martín-Antonio B, Ghazanfari R, Martín AM, López JA, del Toro R et al (2013) Self-renewing human bone marrow mesenspheres promote hematopoietic stem cell expansion. Cell Rep 3(5):1714–1724

    Article  CAS  Google Scholar 

  14. Jeon S, Lee H-S, Lee G-Y, Park G, Kim T-M, Shin J et al (2017) Shift of EMT gradient in 3D spheroid MSCs for activation of mesenchymal niche function. Sci Rep 7(1)

    Google Scholar 

  15. Schmal O, Seifert J, Schaffer TE, Walter CB, Aicher WK, Klein G (2016) Hematopoietic stem and progenitor cell expansion in contact with mesenchymal stromal cells in a hanging drop model uncovers disadvantages of 3D culture. Stem Cells Int 2016:4148093

    Article  Google Scholar 

  16. Greenbaum A, Hsu Y-MS, Day RB, Schuettpelz LG, Christopher MJ, Borgerding JN et al (2013) CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance. Nature 495(7440):227–230

    Article  CAS  Google Scholar 

  17. Singh H, Mok P, Balakrishnan T, Rahmat SNB, Zweigerdt R (2010) Up-scaling single cell-inoculated suspension culture of human embryonic stem cells. Stem Cell Res 4(3):165–179

    Article  CAS  Google Scholar 

  18. Banerjee M, Bhonde RR (2006) Application of hanging drop technique for stem cell differentiation and cytotoxicity studies. Cytotechnology 51(1):1–5

    Article  Google Scholar 

  19. Dontu G, Abdallah WM, Foley JM, Jackson KW, Clarke MF, Kawamura MJ et al (2003) In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev 17(10):1253–1270

    Article  CAS  Google Scholar 

  20. Lewis NS, Lewis EEL, Mullin M, Wheadon H, Dalby MJ, Berry CC (2017) Magnetically levitated mesenchymal stem cell spheroids cultured with a collagen gel maintain phenotype and quiescence. J Tissue Eng 8:1–11

    Article  CAS  Google Scholar 

  21. Andrade PZ, dos Santos F, Almeida-Porada G, Lobato da Silva C, S. Cabral JM. (2010) Systematic delineation of optimal cytokine concentrations to expand hematopoietic stem/progenitor cells in co-culture with mesenchymal stem cells. Mol BioSyst 6(7):1207

    Article  CAS  Google Scholar 

  22. da Silva CL, Gonçalves R, Crapnell KB, Cabral J, Zanjani ED, Almeida-Porada G (2005) A human stromal-based serum-free culture system supports the ex vivo expansion/maintenance of bone marrow and cord blood hematopoietic stem/progenitor cells. Exp Hematol 33(7):828–835

    Article  Google Scholar 

  23. Kadekar D, Kale V, Limaye L (2015) Differential ability of MSCs isolated from placenta and cord as feeders for supporting ex vivo expansion of umbilical cord blood derived CD34+ cells. Stem Cell Res Ther 6:201

    Article  Google Scholar 

  24. Eaves C, Lambie K (1995) Atlas of human hematopoietic colonies. STEM CELL Technol Inc., Vancouver, BC

    Google Scholar 

Download references

Acknowledgments

MHC acknowledges Fundação para a Ciência e a Tecnologia (FCT), Portugal, for granting PhD scholarship SFRH/BD/52000/2012. Funding received by iBB—Institute for Bioengineering and Biosciences from FCT (UID/BIO/04565/2013) and from Programa Operacional Regional de Lisboa 2020 (Project N. 007317) is acknowledged. The authors also acknowledge the funding received from Programa Operacional Regional de Lisboa 2020 through the project PRECISE—Accelerating progress toward the new era of precision medicine (Project N. 16394) and from FCT through the project Design and operation of a prototype packed-bed reactor for the production of hematopoietic stem/progenitor cells (PTDC/QEQ-EPR/6623/2014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cláudia L. da Silva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media New York

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Costa, M.H.G., Monteiro, T.S., Cardoso, S., Cabral, J.M.S., Ferreira, F.C., da Silva, C.L. (2018). Three-Dimensional Co-culture of Human Hematopoietic Stem/Progenitor Cells and Mesenchymal Stem/Stromal Cells in a Biomimetic Hematopoietic Niche Microenvironment. In: Turksen, K. (eds) Stem Cell Niche. Methods in Molecular Biology, vol 2002. Humana, New York, NY. https://doi.org/10.1007/7651_2018_181

Download citation

  • DOI: https://doi.org/10.1007/7651_2018_181

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9507-3

  • Online ISBN: 978-1-4939-9508-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics