Skip to main content

High-Grade Purification of Third-Generation HIV-Based Lentiviral Vectors by Anion Exchange Chromatography for Experimental Gene and Stem Cell Therapy Applications

  • Protocol
  • First Online:
Skin Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1879))

Abstract

Lentiviral vectors (LVs) have been increasingly used in clinical gene therapy applications particularly due to their efficient gene transfer ability, lack of interference from preexisting viral immunity, and long-term gene expression they provide. Purity of LVs is essential in in vivo applications, for a high therapeutic benefit with minimum toxicity. Accordingly, laboratory scale production of LVs frequently involves transient cotransfection of 293T cells with packaging and transfer plasmids in the presence of CaPO4. After clearance of the cellular debris by low-speed centrifugation and filtration, lentivectors are usually concentrated by high-speed ultracentrifugation in sucrose cushion. Concentrated viral samples are then purified by anion exchange chromatography (AEX) after benzonase treatment to remove the residual cellular DNA. Here, we describe an improved practical method for LV purification using AEX, useful for experimental studies concerning gene and stem cell therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ponder KP (2001) Vectors of gene therapy. In: Kresina TF (ed) An introduction to molecular medicine and gene therapy. Wiley-Liss, Inc., New York, pp 77–112

    Google Scholar 

  2. Lundstrom K, Boulikas T (2003) Viral and non-viral vectors in gene therapy: technology development and clinical trials. Technol Cancer Res Treat 2(5):471–486

    Article  CAS  Google Scholar 

  3. Glover DJ et al (2005) Towards safe, non-viral therapeutic gene expression in humans. Nat Rev Genet 6(4):299–310

    Article  CAS  Google Scholar 

  4. Hanna E et al (2017) Gene therapies development: slow progress and promising prospect. J Mark Access Health Policy 5(1):1265293

    Article  Google Scholar 

  5. Tasyurek HM, Eksi YE, Sanlioglu AD, Altunbas HA, Balci MK, Griffith TS, Sanlioglu S (2018) HIV-based lentivirus-mediated vasoactive intestinal peptide gene delivery protects against DIO animal model of Type 2 diabetes. Gene Ther https://doi.org/10.1038/s41434-018-0011-1

    Article  CAS  Google Scholar 

  6. Tasyurek HM et al (2018) Therapeutic potential of lentivirus-mediated glucagon-like peptide-1 (GLP-1) gene therapy for diabetes. Hum Gene Ther. https://doi.org/10.1089/hum.2017.180

    Article  CAS  Google Scholar 

  7. Segura MM et al (2006) Downstream processing of oncoretroviral and lentiviral gene therapy vectors. Biotechnol Adv 24(3):321–337

    Article  Google Scholar 

  8. Segura MM, Kamen AA, Garnier A (2011) Overview of current scalable methods for purification of viral vectors. In: OW Merten A-RM (ed) Viral vectors for gene therapy. Humana Press, Totowa, NJ, pp 89–116

    Chapter  Google Scholar 

  9. Segura MM et al (2005) A novel purification strategy for retrovirus gene therapy vectors using heparin affinity chromatography. Biotechnol Bioeng 90(4):391–404

    Article  Google Scholar 

  10. Gandara C et al (2018) Manufacture of third-generation lentivirus for preclinical use, with process development considerations for translation to good manufacturing practice. Hum Gene Ther Methods 29(1):1–15

    Article  CAS  Google Scholar 

  11. Merten OW et al (2011) Large-scale manufacture and characterization of a lentiviral vector produced for clinical ex vivo gene therapy application. Hum Gene Ther 22(3):343–356

    Article  CAS  Google Scholar 

  12. Slepushkin V, Chang N, Cohen R (2003) Large-scale purification of a lentiviral vector by size exclusion chromatography or mustang Q ion exchange capsule. Bioprocess J 2:89–95

    Article  Google Scholar 

  13. Geraerts M et al (2005) Upscaling of lentiviral vector production by tangential flow filtration. J Gene Med 7(10):1299–1310

    Article  CAS  Google Scholar 

  14. Cooper AR et al (2011) Highly efficient large-scale lentiviral vector concentration by tandem tangential flow filtration. J Virol Methods 177(1):1–9

    Article  CAS  Google Scholar 

  15. Roush DJ, Lu Y (2008) Advances in primary recovery: centrifugation and membrane technology. Biotechnol Prog 24(3):488–495

    Article  CAS  Google Scholar 

  16. Burns JC et al (1993) Vesicular stomatitis virus G glycoprotein pseudotyped retroviral vectors: concentration to very high titer and efficient gene transfer into mammalian and nonmammalian cells. Proc Natl Acad Sci U S A 90(17):8033–8037

    Article  CAS  Google Scholar 

  17. Kutner RH et al (2009) Simplified production and concentration of HIV-1-based lentiviral vectors using HYPERFlask vessels and anion exchange membrane chromatography. BMC Biotechnol 9:10

    Article  Google Scholar 

  18. Transfiguracion J et al (2003) Size-exclusion chromatography purification of high-titer vesicular stomatitis virus G glycoprotein-pseudotyped retrovectors for cell and gene therapy applications. Hum Gene Ther 14(12):1139–1153

    Article  CAS  Google Scholar 

  19. Sastry L et al (2004) Evaluation of plasmid DNA removal from lentiviral vectors by benzonase treatment. Hum Gene Ther 15(2):221–226

    Article  CAS  Google Scholar 

  20. Ausubel LJ et al (2012) Production of CGMP-grade lentiviral vectors. Bioprocess Int 10(2):32–43

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Yu JH, Schaffer DV (2006) Selection of novel vesicular stomatitis virus glycoprotein variants from a peptide insertion library for enhanced purification of retroviral and lentiviral vectors. J Virol 80(7):3285–3292

    Article  CAS  Google Scholar 

  22. Rodrigues T et al (2006) Screening anion-exchange chromatographic matrices for isolation of onco-retroviral vectors. J Chromatogr B Analyt Technol Biomed Life Sci 837(1–2):59–68

    Article  CAS  Google Scholar 

  23. Merten OW et al (2014) Manufacturing of viral vectors: Part II. Downstream processing and safety aspects. Pharm Bioprocess 2(3):237–251

    Article  Google Scholar 

  24. Yamada K et al (2003) Lentivirus vector purification using anion exchange HPLC leads to improved gene transfer. Biotechniques 34(5):1074–1078, 1080

    Article  CAS  Google Scholar 

  25. Scherr M et al (2002) Efficient gene transfer into the CNS by lentiviral vectors purified by anion exchange chromatography. Gene Ther 9(24):1708–1714

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study is supported by grants from Akdeniz University Scientific Research Administration Division (TYL-2015-1027) and the Scientific and Technological Research Council of Turkey (TUBITAK-112S114).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salih Sanlioglu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media New York

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Olgun, H.B., Tasyurek, H.M., Sanlioglu, A.D., Sanlioglu, S. (2018). High-Grade Purification of Third-Generation HIV-Based Lentiviral Vectors by Anion Exchange Chromatography for Experimental Gene and Stem Cell Therapy Applications. In: Turksen, K. (eds) Skin Stem Cells. Methods in Molecular Biology, vol 1879. Humana Press, New York, NY. https://doi.org/10.1007/7651_2018_154

Download citation

  • DOI: https://doi.org/10.1007/7651_2018_154

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8869-3

  • Online ISBN: 978-1-4939-8870-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics