Skip to main content

Optical Coherence Tomography to Assess Neurodegeneration in Multiple Sclerosis

  • Protocol
  • First Online:
Multiple Sclerosis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1304))

Abstract

Retinal spectral domain optical coherence tomography (OCT) has emerged as a clinical and research tool in multiple sclerosis (MS) and optic neuritis (ON). This chapter summarizes a short OCT protocol as included in international consensus guidelines. The protocol was written for hands-on style such that both clinicians and OCT technicians can make use of it. The protocol is suitable for imaging of the optic nerve head and macular regions as a baseline for follow-up investigations, individual layer segmentation, and diagnostic assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Frohman EM et al (2008) Optical coherence tomography: a window into the mechanisms of multiple sclerosis. Nat Clin Pract Neurol 4:664–675

    Article  PubMed Central  PubMed  Google Scholar 

  2. Petzold A et al (2010) Optical coherence tomography in multiple sclerosis: a systematic review and meta-analysis. Lancet Neurol 9:921–932

    Article  PubMed  Google Scholar 

  3. Petzold A et al (2014) The investigation of acute optic neuritis: a review and proposed protocol. Nat Rev Neurol 10(8):447–458

    Article  PubMed  Google Scholar 

  4. Balk LJ et al (2014) A dam for retrograde axonal degeneration in multiple sclerosis? J Neurol Neurosurg Psychiatry 85(7):782–789

    Article  CAS  PubMed  Google Scholar 

  5. Oberwahrenbrock T et al (2013) Retinal ganglion cell and inner plexiform layer thinning in clinically isolated syndrome. Mult Scler 19:1887–1895

    Article  PubMed  Google Scholar 

  6. Young KL et al (2013) Loss of retinal nerve fibre layer axons indicates white but not grey matter damage in early multiple sclerosis. Eur J Neurol 20:803–811

    Article  CAS  PubMed  Google Scholar 

  7. Gelfand JM et al (2012) Retinal axonal loss begins early in the course of multiple sclerosis and is similar between progressive phenotypes. PLoS One 7:e36847

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Saidha S et al (2013) Relationships between retinal axonal and neuronal measures and global central nervous system pathology in multiple sclerosis. JAMA Neurol 70(1):34–43

    Google Scholar 

  9. Gabilondo I et al (2014) Trans-synaptic axonal degeneration in the visual pathway in multiple sclerosis. Ann Neurol 75:98–107

    Article  CAS  PubMed  Google Scholar 

  10. Klistorner A et al (2014) Axonal loss of retinal neurons in multiple sclerosis associated with optic radiation lesions. Neurology 82(24):2165–2172

    Article  PubMed Central  PubMed  Google Scholar 

  11. Petzold A (2014) Neurodegeneration and multiple sclerosis. Neurodegenerative diseases, pp 227–245. http://link.springer.com/chapter/ 10.1007/978-1-4471-6380-0_14

    Google Scholar 

  12. Gelfand JM et al (2012) Microcystic macular oedema in multiple sclerosis is associated with disease severity. Brain 135(Pt 6):1786–1793

    Article  PubMed Central  PubMed  Google Scholar 

  13. Balk LJ et al (2012) Microcystic macular oedema confirmed, but not specific for multiple sclerosis. Brain 135:e226

    Article  PubMed  Google Scholar 

  14. Burggraaff MC et al (2014) The clinical spectrum of microcystic macular oedema. Invest Ophthalmol Vis Sci 55:952–961

    Article  PubMed  Google Scholar 

  15. Saidha S et al (2012) Microcystic macular oedema, thickness of the inner nuclear layer of the retina, and disease characteristics in multiple sclerosis: a retrospective study. Lancet Neurol 11:963–972

    Article  PubMed Central  PubMed  Google Scholar 

  16. Petzold A (2012) Microcystic macular oedema in MS: T2 lesion or black hole? Lancet Neurol 11:933–934

    Article  PubMed  Google Scholar 

  17. Abegg M et al (2014) Microcystic macular edema: retrograde maculopathy caused by optic neuropathy. Ophthalmology 121:142–149

    Article  PubMed  Google Scholar 

  18. Balk LJ, Petzold A (2013) Influence of the eye-tracking-based follow-up function in retinal nerve fiber layer thickness using fourier-domain optical coherence tomography. Invest Ophthalmol Vis Sci 54:3045

    Article  PubMed  Google Scholar 

  19. Wolf-Schnurrbusch UEK et al (2009) Macular thickness measurements in healthy eyes using six different optical coherence tomography instruments. Invest Ophthalmol Vis Sci 50:3432–3437

    Article  PubMed  Google Scholar 

  20. Tewarie P et al (2012) The OSCAR-IB consensus criteria for retinal OCT quality assessment. PLoS One 7:e34823

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Schippling S et al (2014) Quality control for retinal OCT in multiple sclerosis: validation of the OSCAR-IB criteria. Mult Scler. pii: 1352458514538110. [Epub ahead of print], PMID: 24948688

    Google Scholar 

  22. Kupersmith MJ et al (2011) Optical coherence tomography of the swollen optic nerve head: deformation of the peripapillary retinal pigment epithelium layer in papilledema. Invest Ophthalmol Vis Sci 52:6558–6564

    Article  PubMed Central  PubMed  Google Scholar 

  23. Kaufhold F et al (2012) Optic nerve head quantification in idiopathic intracranial hypertension by spectral domain OCT. PLoS One 7:e36965

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Wang B et al (2014) Reproducibility of in-vivo OCT measured three-dimensional human lamina cribrosa microarchitecture. PLoS One 9:e95526

    Article  PubMed Central  PubMed  Google Scholar 

  25. Uhthoff W (1886) Untersuchungen über den Einfluss des chronischen Alkoholismus auf das menschliche Sehorgan. Archiv für Ophthalmologie 32:95–188

    Google Scholar 

  26. Ogden TE (1984) Nerve fiber layer of the primate retina: morphometric analysis. Invest Ophthalmol Vis Sci 25:19–29

    CAS  PubMed  Google Scholar 

  27. Fard MA et al (2014) Quantification of peripapillary total retinal volume in pseudopapilledema and mild papilledema using spectral-domain optical coherence tomography. Am J Ophthalmol 158(1):136–143

    Article  PubMed  Google Scholar 

  28. Balk LJ, Petzold A (2014) Current and future potential of retinal optical coherence tomography in multiple sclerosis with and without optic neuritis. Neurodegener Dis Manag 4:165–176

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel Petzold .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Petzold, A. (2014). Optical Coherence Tomography to Assess Neurodegeneration in Multiple Sclerosis. In: Weissert, R. (eds) Multiple Sclerosis. Methods in Molecular Biology, vol 1304. Humana Press, New York, NY. https://doi.org/10.1007/7651_2014_153

Download citation

  • DOI: https://doi.org/10.1007/7651_2014_153

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2629-9

  • Online ISBN: 978-1-4939-2630-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics