In Vivo Visualization of (Auto)Immune Processes in the Central Nervous System of Rodents

  • Christian Schläger
  • Tanja Litke
  • Alexander FlügelEmail author
  • Francesca Odoardi
Part of the Methods in Molecular Biology book series (MIMB, volume 1304)


The CNS is effectively shielded from the periphery by the blood–brain barrier (BBB) which limits the entry of cells and solutes. However, in autoimmune disorders such as multiple sclerosis, immune cells can overcome this barrier and induce the formation of CNS inflammatory lesions. Recently, two-photon laser scanning microscopy (TPLSM) has made it possible to visualize autoimmune processes in the living CNS in real time. However, along with a high microscopy standard, this technique requires an advanced surgical procedure to access the region of interest. Here, we describe in detail the necessary methodological steps to visualize (auto)immune processes in living rodent tissue. We focus on the procedures to image the leptomeningeal vessels of the thoracic spinal cord during transfer experimental autoimmune encephalomyelitis in LEW rats (AT EAE) and in active EAE in C57BL/6 mice (aEAE).


Dura (mater) spinalis Experimental autoimmune encephalomyelitis (EAE) Encephalitogenic T cells Laminectomy TPLSM (two-photon laser scanning microscopy) Spinal cord window myelin basic protein (MBP) myelin oligodendrocyte glycoprotein (MOG) 



The authors thank C. Ludwig for text editing. We thank N. Kawakami and I. Bartholomðus for their help in setting up the TPLSM technique and surgical procedures. This work was supported by the Deutsche Forschungsgemeinschaft (TRR-SFB43 projects B10 and B11, FORR 1336), the Bundesministerium für Bildung und Forschung (“UNDERSTAND MS”), and the Ministry of Science and Culture of Lower Saxony (Niedersachsen-Research Network on Neuroinfectiology, N-RENNT).


  1. 1.
    Miller MJ, Wei SH, Parker I et al (2002) Two-photon imaging of lymphocyte motility and antigen response in intact lymph node. Science 296:1869–1873PubMedCrossRefGoogle Scholar
  2. 2.
    Bousso P, Bhakta NR, Lewis RS et al (2002) Dynamics of thymocyte-stromal cell interactions visualized by two-photon microscopy. Science 296:1876–1880PubMedCrossRefGoogle Scholar
  3. 3.
    Zipfel WR, Williams RM, Webb WW (2003) Nonlinear magic: multiphoton microscopy in the biosciences. Nat Biotechnol 21:1369–1377PubMedCrossRefGoogle Scholar
  4. 4.
    Helmchen F, Denk W (2005) Deep tissue two-photon microscopy. Nat Methods 2:932–940PubMedCrossRefGoogle Scholar
  5. 5.
    Germain RN, Robey EA, Cahalan MD (2012) A decade of imaging cellular motility and interaction dynamics in the immune system. Science 336:1676–1681PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Kawakami N, Nägerl UV, Odoardi F et al (2005) Live imaging of effector cell trafficking and autoantigen recognition within the unfolding autoimmune encephalomyelitis lesion. J Exp Med 201:1805–1814PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Siffrin V, Brandt AU, Radbruch H et al (2009) Differential immune cell dynamics in the CNS cause CD4+ T cell compartmentalization. Brain 132:1247–1258PubMedCrossRefGoogle Scholar
  8. 8.
    Odoardi F, Kawakami N, Klinkert WE et al (2007) Blood-borne soluble protein antigen intensifies T cell activation in autoimmune CNS lesions and exacerbates clinical disease. Proc Natl Acad Sci U S A 104:18625–18630PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Kim JV, Jiang N, Tadokoro CE et al (2010) Two-photon laser scanning microscopy imaging of intact spinal cord and cerebral cortex reveals requirement for CXCR6 and neuroinflammation in immune cell infiltration of cortical injury sites. J Immunol Methods 352:89–100PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Siffrin V, Radbruch H, Glumm R et al (2010) In vivo imaging of partially reversible th17 cell-induced neuronal dysfunction in the course of encephalomyelitis. Immunity 33:424–436PubMedCrossRefGoogle Scholar
  11. 11.
    Bartholomäus I, Kawakami N, Odoardi F et al (2009) Effector T cell interactions with meningeal vascular structures in nascent autoimmune CNS lesions. Nature 462:94–98PubMedCrossRefGoogle Scholar
  12. 12.
    Lodygin D, Odoardi F, Schläger C et al (2013) A combination of fluorescent NFAT and H2B sensors uncovers dynamics of T cell activation in real time during CNS autoimmunity. Nat Med 19:184–190CrossRefGoogle Scholar
  13. 13.
    Wekerle H (2008) Lessons from multiple sclerosis: models, concepts, observations. Ann Rheum Dis 67:56–60CrossRefGoogle Scholar
  14. 14.
    Baxter AG (2007) The origin and application of experimental autoimmune encephalomyelitis. Nat Rev Immunol 7:904–912PubMedCrossRefGoogle Scholar
  15. 15.
    Ransohoff RM (2012) Animal models of multiple sclerosis: the good, the bad and the bottom line. Nat Neurosci 15:1074–1077PubMedCrossRefGoogle Scholar
  16. 16.
    Okabe M, Ikawa M, Kominami K et al (1997) ‘Green mice’ as a source of ubiquitous green cells. FEBS Lett 407:313–319PubMedCrossRefGoogle Scholar
  17. 17.
    Bettelli E, Pagany M, Weiner HL et al (2003) Myelin oligodendrocyte glycoprotein-specific T cell receptor transgenic mice develop spontaneous autoimmune optic neuritis. J Exp Med 197:1073–1081PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Flügel A, Willem M, Berkowicz T et al (1999) Gene transfer into CD4+ T lymphocytes: green fluorescent protein-engineered, encephalitogenic T cells illuminate brain autoimmune responses. Nat Med 5:843–847PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Christian Schläger
    • 1
  • Tanja Litke
    • 1
  • Alexander Flügel
    • 1
    • 2
    Email author
  • Francesca Odoardi
    • 1
    • 2
  1. 1.Department of Neuroimmunology, Institute for Multiple Sclerosis ResearchUniversity Medical Centre Göttingen and Gemeinnützige Hertie-StiftungGöttingenGermany
  2. 2.Max-Planck-Institute for Experimental MedicineGöttingenGermany

Personalised recommendations