Skip to main content

Positional Gene Cloning in Experimental Populations

  • Protocol
  • First Online:
Multiple Sclerosis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1304))

  • 4904 Accesses

Abstract

Positional cloning is a technique that identifies a trait-associated gene based on its location in the genome and involves methods such as linkage analysis, association mapping, and bioinformatics. This approach can be used for gene identification even when little is known about the molecular basis of the trait. Vast majority of traits are regulated by multiple genomic loci called quantitative trait loci (QTL). We describe experimental populations and designs that can be used for positional cloning, including backcrosses, intercrosses, and heterogeneous stocks, and advantages and disadvantages of different approaches. Once the phenotype and genotype of each individual in an experimental population have been determined, QTL identification can be accomplished. We describe the statistical tools used to identify the existence, location, and significance of QTLs. These different methods have advantages and disadvantages to consider when selecting the appropriate model to be used, which is briefly discussed.

Although the objective of QTL mapping is to identify genomic regions associated with a trait, the ultimate goal is to identify the gene and the genetic variation (which is often quantitative trait nucleotide, QTN) or haplotype that is responsible for the phenotype. By discovering the function of causative variants or haplotypes we can understand the molecular changes that lead to the phenotype. We briefly describe how the genomic sequences can be exploited to identify QTNs and how these can be validated in congenic strains and functionally tested to understand their influence on phenotype expression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Darvasi A (1998) Experimental strategies for the genetic dissection of complex traits in animal models. Nat Genet 18:19–24

    Article  CAS  PubMed  Google Scholar 

  2. Stridh P, Ruhrmann S, Bergman P, Thessen Hedreul M, Flytzani S, Beyeen AD, Gillett A, Krivosija N, Ockinger J, Ferguson-Smith AC, Jagodic M (2014) Parent-of-origin effects implicate epigenetic regulation of experimental autoimmune encephalomyelitis and identify imprinted Dlk1 as a novel risk gene. PLoS Genet 10:e1004265

    Article  PubMed Central  PubMed  Google Scholar 

  3. Darvasi A, Soller M (1995) Advanced intercross lines, an experimental population for fine genetic mapping. Genetics 141:1199–1207

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Hansen C, Spuhler K (1984) Development of the National Institutes of Health genetically heterogeneous rat stock. Alcohol Clin Exp Res 8:477–479

    Article  CAS  PubMed  Google Scholar 

  5. Demarest K, Koyner J, McCaughran J Jr, Cipp L, Hitzemann R (2001) Further characterization and high-resolution mapping of quantitative trait loci for ethanol-induced locomotor activity. Behav Genet 31:79–91

    Article  CAS  PubMed  Google Scholar 

  6. Caballero A, Toro MA (2000) Interrelations between effective population size and other pedigree tools for the management of conserved populations. Genet Res 75:331–343

    Article  CAS  PubMed  Google Scholar 

  7. Valdar W, Solberg LC, Gauguier D, Burnett S, Klenerman P, Cookson WO, Taylor MS, Rawlins JN, Mott R, Flint J (2006) Genome-wide genetic association of complex traits in heterogeneous stock mice. Nat Genet 38:879–887

    Article  CAS  PubMed  Google Scholar 

  8. Mott R, Flint J (2002) Simultaneous detection and fine mapping of quantitative trait loci in mice using heterogeneous stocks. Genetics 160:1609–1618

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Broman KW (2001) Review of statistical methods for QTL mapping in experimental crosses. Lab Anim 30:44–52

    CAS  Google Scholar 

  10. Lander ES, Botstein D (1989) Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Haley CS, Knott SA (1992) A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 69:315–324

    Article  CAS  PubMed  Google Scholar 

  12. Lander E, Kruglyak L (1995) Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet 11:241–247

    Article  CAS  PubMed  Google Scholar 

  13. Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Marta M, Stridh P, Becanovic K, Gillett A, Ockinger J, Lorentzen JC, Jagodic M, Olsson T (2010) Multiple loci comprising immune-related genes regulate experimental neuroinflammation. Genes Immun 11:21–36

    Article  CAS  PubMed  Google Scholar 

  15. Broman KW, Wu H, Sen S, Churchill GA (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19:889–890

    Article  CAS  PubMed  Google Scholar 

  16. Mott R, Talbot CJ, Turri MG, Collins AC, Flint J (2000) A method for fine mapping quantitative trait loci in outbred animal stocks. Proc Natl Acad Sci U S A 97:12649–12654

    Article  PubMed Central  PubMed  Google Scholar 

  17. Ball RD (2001) Bayesian methods for quantitative trait loci mapping based on model selection: approximate analysis using the Bayesian information criterion. Genetics 159:1351–1364

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Broman KW, Speed TP (2002) A model selection approach for the identification of quantitative trait loci in experimental crosses. J Roy Stat Soc B Stat Meth 64:641–656

    Article  Google Scholar 

  19. Sillanpaa MJ, Corander J (2002) Model choice in gene mapping: what and why. Trends Genet 18:301–307

    Article  CAS  PubMed  Google Scholar 

  20. Kang HM, Zaitlen NA, Wade CM, Kirby A, Heckerman D, Daly MJ, Eskin E (2008) Efficient control of population structure in model organism association mapping. Genetics 178:1709–1723

    Article  PubMed Central  PubMed  Google Scholar 

  21. Wakeland E, Morel L, Achey K, Yui M, Longmate J (1997) Speed congenics: a classic technique in the fast lane (relatively speaking). Immunol Today 18:472–477

    Article  CAS  PubMed  Google Scholar 

  22. Jagodic M, Colacios C, Nohra R, Dejean AS, Beyeen AD, Khademi M, Casemayou A, Lamouroux L, Duthoit C, Papapietro O, Sjoholm L, Bernard I, Lagrange D, Dahlman I, Lundmark F, Oturai AB, Soendergaard HB, Kemppinen A, Saarela J, Tienari PJ, Harbo HF, Spurkland A, Ramagopalan SV, Sadovnick DA, Ebers GC, Seddighzadeh M, Klareskog L, Alfredsson L, Padyukov L, Hillert J, Clanet M, Edan G, Fontaine B, Fournie GJ, Kockum I, Saoudi A, Olsson T (2009) A role for VAV1 in experimental autoimmune encephalomyelitis and multiple sclerosis. Sci Transl Med 1:10ra21

    PubMed  Google Scholar 

  23. Rat Genome S, Mapping C, Baud A, Hermsen R, Guryev V, Stridh P, Graham D, McBride MW, Foroud T, Calderari S, Diez M, Ockinger J, Beyeen AD, Gillett A, Abdelmagid N, Guerreiro-Cacais AO, Jagodic M, Tuncel J, Norin U, Beattie E, Huynh N, Miller WH, Koller DL, Alam I, Falak S, Osborne-Pellegrin M, Martinez-Membrives E, Canete T, Blazquez G, Vicens-Costa E, Mont-Cardona C, Diaz-Moran S, Tobena A, Hummel O, Zelenika D, Saar K, Patone G, Bauerfeind A, Bihoreau MT, Heinig M, Lee YA, Rintisch C, Schulz H, Wheeler DA, Worley KC, Muzny DM, Gibbs RA, Lathrop M, Lansu N, Toonen P, Ruzius FP, de Bruijn E, Hauser H, Adams DJ, Keane T, Atanur SS, Aitman TJ, Flicek P, Malinauskas T, Jones EY, Ekman D, Lopez-Aumatell R, Dominiczak AF, Johannesson M, Holmdahl R, Olsson T, Gauguier D, Hubner N, Fernandez-Teruel A, Cuppen E, Mott R, Flint J (2013) Combined sequence-based and genetic mapping analysis of complex traits in outbred rats. Nat Genet 45:767–775

    Article  Google Scholar 

  24. Serikawa T, Mashimo T, Takizawa A, Okajima R, Maedomari N, Kumafuji K, Tagami F, Neoda Y, Otsuki M, Nakanishi S, Yamasaki K, Voigt B, Kuramoto T (2009) National BioResource project-rat and related activities. Exp Anim 58:333–341

    Article  CAS  PubMed  Google Scholar 

  25. Darvasi A, Soller M (1997) A simple method to calculate resolving power and confidence interval of QTL map location. Behav Genet 27:125–132

    Article  CAS  PubMed  Google Scholar 

  26. Hospital F (2005) Selection in backcross programmes. Philos Trans R Soc Lond B Biol Sci 360:1503–1511

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Cui Y, Cheverud JM, Wu R (2007) A statistical model for dissecting genomic imprinting through genetic mapping. Genetica 130:227–239

    Article  PubMed  Google Scholar 

  28. Zou F (2009) QTL mapping in intercross and backcross populations. Methods Mol Biol 573:157–173

    Article  CAS  PubMed  Google Scholar 

  29. Hitzemann B, Dains K, Kanes S, Hitzemann R (1994) Further studies on the relationship between dopamine cell density and haloperidol-induced catalepsy. J Pharmacol Exp Ther 271:969–976

    CAS  PubMed  Google Scholar 

  30. Valdar W, Holmes CC, Mott R, Flint J (2009) Mapping in structured populations by resample model averaging. Genetics 182:1263–1277

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maja Jagodic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Jagodic, M., Stridh, P. (2014). Positional Gene Cloning in Experimental Populations. In: Weissert, R. (eds) Multiple Sclerosis. Methods in Molecular Biology, vol 1304. Humana Press, New York, NY. https://doi.org/10.1007/7651_2014_108

Download citation

  • DOI: https://doi.org/10.1007/7651_2014_108

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2629-9

  • Online ISBN: 978-1-4939-2630-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics