Skip to main content

Applying Microfluidic Systems to Study Effects of Glucose at Single-Cell Level

  • Protocol
  • First Online:
Glucose Transport

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1713))

Abstract

Microfluidic systems in combination with microscopy (e.g., fluorescence) can be a powerful tool to study, at single-cell level, the behavior and morphology of biological cells after uptake of glucose. Here, we briefly discuss the advantages of using microfluidic systems. We further describe how microfluidic systems are fabricated and how they are utilized. Finally, we discuss how the large amount of data can be analyzed in a “semi-automatic” manner using custom-made software. In summary, we provide a guide to how to use microfluidic systems in single-cell studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Bendrioua L, Smedh M, Almquist J, Cvijovic M, Jirstrand M, Goksor M, Adiels CB, Hohmann S (2014) Yeast AMP-activated protein kinase monitors glucose concentration changes and absolute glucose levels. J Biol Chem 289(18):12863–12875. https://doi.org/10.1074/jbc.M114.547976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Steinmetz EJ, Brow DA (1998) Control of pre-mRNA accumulation by the essential yeast protein Nrd1 requires high-affinity transcript binding and a domain implicated in RNA polymerase II association. Proc Natl Acad Sci U S A 95(12):6699–6704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Treitel MA, Kuchin S, Carlson M (1998) Snf1 protein kinase regulates phosphorylation of the Mig1 repressor in Saccharomyces Cerevisiae. Mol Cell Biol 18(11):6273–6280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Elbing K, Stahlberg A, Hohmann S, Gustafsson L (2004) Transcriptional responses to glucose at different glycolytic rates in Saccharomyces cerevisiae. Eur J Biochem 271(23–24):4855–4864. https://doi.org/10.1111/j.1432-1033.2004.04451.x

    Article  CAS  PubMed  Google Scholar 

  5. Elbing K, Larsson C, Bill RM, Albers E, Snoep JL, Boles E, Hohmann S, Gustafsson L (2004) Role of hexose transport in control of glycolytic flux in Saccharomyces cerevisiae. Appl Environ Microbiol 70(9):5323–5330. https://doi.org/10.1128/aem.70.9.5323-5330.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lin Y, Sohn CH, Dalal CK, Cai L, Elowitz MB (2015) Combinatorial gene regulation by modulation of relative pulse timing. Nature 527(7576):54–58. https://doi.org/10.1038/nature15710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zambon A, Zoso A, Luni C, Frommer WB, Elvassore N (2014) Determination of glucose flux in live myoblasts by microfluidic nanosensing and mathematical modeling. Integr Biol (Camb) 6(3):277–288. https://doi.org/10.1039/c3ib40204e

    Article  CAS  Google Scholar 

  8. Eriksson E, Sott K, Lundqvist F, Sveningsson M, Scrimgeour J, Hanstorp D, Goksor M, Graneli A (2010) A microfluidic device for reversible environmental changes around single cells using optical tweezers for cell selection and positioning. Lab Chip 10(5):617–625. https://doi.org/10.1039/b913587a

    Article  CAS  PubMed  Google Scholar 

  9. Whitesides GM (2006) The origins and the future of microfluidics. Nature 442(7101):368–373. https://doi.org/10.1038/nature05058

    Article  CAS  PubMed  Google Scholar 

  10. Cademartiri L, Ozin GA (2009) Concepts of nanochemistry. Wiley, Weinheim

    Google Scholar 

  11. Eriksson E, Engstrom D, Scrimgeour J, Goksor M (2009) Automated focusing of nuclei for time lapse experiments on single cells using holographic optical tweezers. Opt Express 17(7):5585–5594

    Article  CAS  PubMed  Google Scholar 

  12. Kvarnstrom M, Logg K, Diez A, Bodvard K, Kall M (2008) Image analysis algorithms for cell contour recognition in budding yeast. Opt Express 16(17):12943–12957

    Article  PubMed  Google Scholar 

  13. Smedh M, Adiels CB, Sott K, Goksör M (2010) CellStress—open source image analysis program for single-cell analysis. Proc SPIE Int Soc Opt Eng 7762. https://doi.org/10.1117/12.860403

  14. Dimopoulos S, Mayer CE, Rudolf F, Stelling J (2014) Accurate cell segmentation in microscopy images using membrane patterns. Bioinformatics 30(18):2644–2651. https://doi.org/10.1093/bioinformatics/btu302

    Article  CAS  PubMed  Google Scholar 

  15. Chernomoretz A, Bush A, Yu R, Gordon A, Colman-Lerner A (2008) Using Cell-ID 1.4 with R for microscope-based cytometry. Current protocols in molecular biology/edited by Frederick M Ausubel [et al] Chapter 14:Unit 14.18. doi:https://doi.org/10.1002/0471142727.mb1418s84

Download references

Acknowledgements

We wish to acknowledge the Science Faculty of the University of Gothenburg for financing and supporting the PDMS Microfluidic Fabrication Facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Hohmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Welkenhuysen, N., Adiels, C.B., Goksör, M., Hohmann, S. (2018). Applying Microfluidic Systems to Study Effects of Glucose at Single-Cell Level. In: Lindkvist-Petersson, K., Hansen, J. (eds) Glucose Transport. Methods in Molecular Biology, vol 1713. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7507-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7507-5_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7506-8

  • Online ISBN: 978-1-4939-7507-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics