Skip to main content

Sample Preparation for Proteomic Analysis of Neisseria meningitidis

  • Protocol
  • First Online:
Neisseria meningitidis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1969))

Abstract

Mass spectrometry (MS) proteomics allows systematic identification, characterization, and relative quantification of the full suite of proteins in a biological sample, and is a powerful analytical approach for investigation of many aspects of the biology of Neisseria meningitidis. Here, we describe methods for robust and efficient sample preparation of the proteome of N. meningitidis suitable for diverse MS proteomics workflows.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aebersold R, Mann M (2016) Mass-spectrometric exploration of proteome structure and function. Nature 537:347–355

    Article  CAS  Google Scholar 

  2. Gillet LC, Leitner A, Aebersold R (2016) Mass spectrometry applied to bottom-up proteomics: entering the high-throughput era for hypothesis testing. Annu Rev Anal Chem (Palo Alto, CA) 9:449–472

    Article  Google Scholar 

  3. Ebhardt HA, Root A, Sander C, Aebersold R (2015) Applications of targeted proteomics in systems biology and translational medicine. Proteomics 15:3193–3208

    Article  CAS  Google Scholar 

  4. Gillet LC, Navarro P, Tate S, Röst H, Selevsek N, Reiter L, Bonner R, Aebersold R (2012) Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol Cell Proteomics 11:O111.016717

    Article  Google Scholar 

  5. Ludwig C, Gillet L, Rosenberger G, Amon S, Collins BC, Aebersold R (2018) Data-independent acquisition-based SWATH-MS for quantitative proteomics: a tutorial. Mol Syst Biol 14:e8126

    Article  Google Scholar 

  6. Lange PF, Overall CM (2013) Protein TAILS: when termini tell tales of proteolysis and function. Curr Opin Chem Biol 17:73–82

    Article  CAS  Google Scholar 

  7. Munk S, Refsgaard JC, Olsen JV (2016) Systems analysis for interpretation of phosphoproteomics data. Methods Mol Biol 1355:341–360

    Article  CAS  Google Scholar 

  8. Thaysen-Andersen M, Packer NH, Schulz BL (2016) Maturing glycoproteomics technologies provide unique structural insights into the N-glycoproteome and its regulation in health and disease. Mol Cell Proteomics 15:1773–1790

    Article  CAS  Google Scholar 

  9. Titeca K, Lemmens I, Tavernier J, Eyckerman S (2019) Discovering cellular protein-protein interactions: technological strategies and opportunities. Mass Spectrom Rev 38:79–111

    Article  CAS  Google Scholar 

  10. Christodoulides M (2014) Neisseria proteomics for antigen discovery and vaccine development. Expert Rev Proteomics 11:573–591

    Article  CAS  Google Scholar 

  11. Christodoulides M, Heckels J (2017) Novel approaches to Neisseria meningitidis vaccine design. Pathog Dis 75:ftx033

    Article  Google Scholar 

  12. Rinaudo CD, Telford JL, Rappuoli R, Seib KL (2009) Vaccinology in the genome era. J Clin Invest 119:2515–2525

    Article  CAS  Google Scholar 

  13. Tsolakos N, Brookes C, Taylor S, Gorringe A, Tang CM, Feavers IM, Wheeler JX (2014) Identification of vaccine antigens using integrated proteomic analyses of surface immunogens from serogroup B Neisseria meningitidis. J Proteome 101:63–76

    Google Scholar 

  14. van Alen T, Claus H, Zahedi RP, Groh J, Blazyca H, Lappann M, Sickmann A, Vogel U (2010) Comparative proteomic analysis of biofilm and planktonic cells of Neisseria meningitidis. Proteomics 10:4512–4521

    Google Scholar 

  15. Peak IR, Chen A, Jen FE, Jennings C, Schulz BL, Saunders NJ, Kahn A, Seifert HS, Jennings MP (2016) Neisseria meningitidis lacking the major porins PorA and PorB are viable and modulate apoptosis and the oxidative burst of neutrophils. J Proteome Res 15:2356–2365

    Google Scholar 

  16. Bernardini G, Laschi M, Serchi T, Arena S, D’Ambrosio C, Braconi D, Scaloni A, Santucci A (2011) Mapping phosphoproteins in Neisseria meningitidis serogroup A. Proteomics 11:1351–1358

    Google Scholar 

  17. Jen FE, Warren MJ, Schulz BL, Power PM, Swords WE, Weiser JN, Apicella MA, Edwards JL, Jennings MP (2013) Dual pili post-translational modifications synergize to mediate meningococcal adherence to platelet activating factor receptor on human airway cells. PLoS Pathog 9:e1003377

    Article  CAS  Google Scholar 

  18. Chamot-Rooke J, Rousseau B, Lanternier F, Mikaty G, Mairey E, Malosse C, Bouchoux G, Pelicic V, Camoin L, Nassiff X, Dumenil G (2007) Alternative Neisseria spp. type IV pilin glycosylation with a glyceramido acetamido trideoxyhexose residue. Proc Natl Acad Sci U S A 104:14783–14788

    Google Scholar 

  19. Ku SC, Schulz BL, Power PM, Jennings MP (2009) The pilin O-glycosylation pathway of pathogenic Neisseria is a general system that glycosylates AniA, an outer membrane nitrite reductase. Biochem Biophys Res Commun 378:84–89

    Google Scholar 

  20. Schulz BL, Jen FE, Power PM, Jones CE, Fox KL, Ku SC, Blanchfield JT, Jennings MP (2013) Identification of bacterial protein O-oligosaccharyltransferases and their glycoprotein substrates. PLoS One 8:e62768

    Article  CAS  Google Scholar 

  21. Gault J, Malosse C, Dumenil G, Chamot-Rooke J (2013) A combined mass spectrometry strategy for complete posttranslational modification mapping of Neisseria meningitidis major pilin. J Mass Spectrom 48:1199–1206

    Google Scholar 

  22. Gault J, Malosse C, Machata S, Millien C, Podglajen I, Ploy MC, Costello CE, Dumenil G, Chamot-Rooke J (2014) Complete posttranslational modification mapping of pathogenic Neisseria meningitidis pilins requires top-down mass spectrometry. Proteomics 14:1141–1151

    Google Scholar 

  23. Müller T, Winter D (2017) Systematic evaluation of protein reduction and alkylation reveals massive unspecific side effects by iodine-containing reagents. Mol Cell Proteomics 16:1173–1187

    Article  Google Scholar 

  24. Wisniewski JR, Zougman A, Nagaraj N, Mann M (2009) Universal sample preparation method for proteome analysis. Nat Methods 6:359–362

    Article  CAS  Google Scholar 

  25. Hughes CS, Foehr S, Garfield DA, Furlong EE, Steinmetz LM, Krijgsveld J (2014) Ultrasensitive proteome analysis using paramagnetic bead technology. Mol Syst Biol 10:757

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Health and Medical Research Council Career Development Fellowship APP1087975 to B.L.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin L. Schulz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Schulz, B.L. (2019). Sample Preparation for Proteomic Analysis of Neisseria meningitidis. In: Seib, K., Peak, I. (eds) Neisseria meningitidis. Methods in Molecular Biology, vol 1969. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9202-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9202-7_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9201-0

  • Online ISBN: 978-1-4939-9202-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics