Skip to main content

An Overview of Neisseria meningitidis

  • Protocol
  • First Online:
Neisseria meningitidis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1969))

Abstract

Neisseria meningitidis (the meningococcus) is a member of the normal nasopharyngeal microbiome in healthy individuals, but can cause septicemia and meningitis in susceptible individuals. In this chapter we provide an overview of the disease caused by N. meningitidis and the schemes used to type the meningococcus. We also review the adhesions, virulence factors, and phase variable genes that enable it to successfully colonize the human host. Finally, we outline the history and current status of meningococcal vaccines and highlight the importance of continued molecular investigation of the epidemiology and the structural analysis of the antigens of this pathogen to aid future vaccine development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu G, Tang CM, Exley RM (2015) Non-pathogenic Neisseria: members of an abundant, multi-habitat, diverse genus. Microbiology 161:1297–1312

    Google Scholar 

  2. Blakebrough IS, Greenwood BM, Whittle HC, Bradley AK, Gilles HM (1982) The epidemiology of infections due to Neisseria meningitidis and Neisseria lactamica in a northern Nigerian community. J Infect Dis 146:626–637

    Google Scholar 

  3. Winstanley FP, Blackwell CC, Weir DM (1985) Factors influencing host susceptibility to meningococcal disease. Biomed Pharmacother 39:167–170

    CAS  PubMed  Google Scholar 

  4. Rosenstein NE, Perkins BA, Stephens DS, Popovic T, Hughes JM (2001) Medical progress: meningococcal disease. N Engl J Med 344:1378–1388

    Article  CAS  Google Scholar 

  5. Viner RM, Booy R, Johnson H, Edmunds WJ, Hudson L, Bedford H, Kaczmarski E, Rajput K, Ramsay M, Christie D (2012) Outcomes of invasive meningococcal serogroup B disease in children and adolescents (MOSAIC): a case-control study. Lancet Neurol 11:774–783

    Article  Google Scholar 

  6. Vyse A, Anonychuk A, Jakel A, Wieffer H, Nadel S (2013) The burden and impact of severe and long-term sequelae of meningococcal disease. Expert Rev Anti-Infect Ther 11:597–604

    Article  CAS  Google Scholar 

  7. Swartley JS, Marfin AA, Edupuganti S, Liu LJ, Cieslak P, Perkins B, Wenger JD, Stephens DS (1997) Capsule switching of Neisseria meningitidis. Proc Natl Acad Sci U S A 94:271–276

    Google Scholar 

  8. Liu TY, Gotschlich EC, Jonssen EK, Wysocki JR (1971) Studies on the meningococcal polysaccharides. I. Composition and chemical properties of the group A polysaccharide. J Biol Chem 246:2849–2858

    CAS  PubMed  Google Scholar 

  9. Bundle DR, Jennings HJ, Kenny CP (1973) An improved procedure for the isolation of meningococcal, polysaccharide antigens, and the structural determination of the antigen from serogroup X. Carbohydr Res 26:268–270

    Article  CAS  Google Scholar 

  10. Maiden MCJ, Bygraves JA, Feil E, Morelli G, Russell JE, Urwin R, Zhang Q, Zhou JJ, Zurth K, Caugant DA, Feavers IM, Achtman M, Spratt BG (1998) Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci U S A 95:3140–3145

    Article  CAS  Google Scholar 

  11. Maiden MC (2006) Multilocus sequence typing of bacteria. Annu Rev Microbiol 60:561–588

    Article  CAS  Google Scholar 

  12. Brehony C, Jolley KA, Maiden MC (2007) Multilocus sequence typing for global surveillance of meningococcal disease. FEMS Microbiol Rev 31:15–26

    Article  CAS  Google Scholar 

  13. Maiden MC, Harrison OB (2016) Population and functional genomics of Neisseria revealed with gene-by-gene approaches. J Clin Microbiol 54:1949–1955

    Google Scholar 

  14. Bratcher HB, Corton C, Jolley KA, Parkhill J, Maiden MCJ (2014) A gene-by-gene population genomics platform: de novo assembly, annotation and genealogical analysis of 108 representative Neisseria meningitidis genomes. BMC Genomics 15:1138

    Google Scholar 

  15. Merz AJ, So M (2000) Interactions of pathogenic neisseriae with epithelial cell membranes. Annu Rev Cell Dev Biol 16:423–457

    Article  CAS  Google Scholar 

  16. Capecchi B, Adu-Bobie J, Di Marcello F, Ciucchi L, Masignani V, Taddei A, Rappuoli R, Pizza M, Arico B (2005) Neisseria meningitidis NadA is a new invasin which promotes bacterial adhesion to and penetration into human epithelial cells. Mol Microbiol 55:687–698

    Google Scholar 

  17. Martin D, Cadieux N, Hamel J, Brodeur BR (1997) Highly conserved Neisseria meningitidis surface protein confers protection against experimental infection. J Exp Med 185:1173–1183

    Google Scholar 

  18. Turner DP, Marietou AG, Johnston L, Ho KK, Rogers AJ, Wooldridge KG, Ala’Aldeen DA (2006) Characterization of MspA, an immunogenic autotransporter protein that mediates adhesion to epithelial and endothelial cells in Neisseria meningitidis. Infect Immun 74:2957–2964

    Google Scholar 

  19. Griffiths NJ, Hill DJ, Borodina E, Sessions RB, Devos NI, Feron CM, Poolman JT, Virji M (2011) Meningococcal surface fibril (Msf) binds to activated vitronectin and inhibits the terminal complement pathway to increase serum resistance. Mol Microbiol 82:1129–1149

    Article  CAS  Google Scholar 

  20. Stephens DS, Hoffman LH, McGee ZA (1983) Interaction of Neisseria meningitidis with human nasopharyngeal mucosa: attachment and entry into columnar epithelial cells. J Infect Dis 148:369–376

    Google Scholar 

  21. Virji M, Makepeace K, Moxon ER (1994) Distinct mechanisms of interactions of Opc-expressing meningococci at apical and basolateral surfaces of human endothelial cells; the role of integrins in apical interactions. Mol Microbiol 14:173–184

    Article  CAS  Google Scholar 

  22. Sutherland TC, Quattroni P, Exley RM, Tang CM (2010) Transcellular passage of Neisseria meningitidis across a polarized respiratory epithelium. Infect Immun 78:3832–3847

    Google Scholar 

  23. Berry JL, Pelicic V (2015) Exceptionally widespread nanomachines composed of type IV pilins: the prokaryotic Swiss Army knives. FEMS Microbiol Rev 39:134–154

    Article  CAS  Google Scholar 

  24. Carbonnelle E, Helaine S, Nassif X, Pelicic V (2006) A systematic genetic analysis in Neisseria meningitidis defines the Pil proteins required for assembly, functionality, stabilization and export of type IV pili. Mol Microbiol 61:1510–1522

    Google Scholar 

  25. Kolappan S, Coureuil M, Yu X, Nassif X, Egelman EH, Craig L (2016) Structure of the Neisseria meningitidis type IV pilus. Nat Commun 7:13015

    Google Scholar 

  26. Virji M, Heckels JE (1983) Antigenic cross-reactivity of Neisseria pili: investigations with type- and species-specific monoclonal antibodies. J Gen Microbiol 129:2761–2768

    Google Scholar 

  27. Wormann ME, Horien CL, Bennett JS, Jolley KA, Maiden MC, Tang CM, Aho EL, Exley RM (2014) Sequence, distribution and chromosomal context of class I and class II pilin genes of Neisseria meningitidis identified in whole genome sequences. BMC Genomics 15:253

    Google Scholar 

  28. Haas R, Meyer TF (1986) The repertoire of silent pilus genes in Neisseria gonorrhoeae: evidence for gene conversion. Cell 44:107–115

    Google Scholar 

  29. Gault J, Ferber M, Machata S, Imhaus AF, Malosse C, Charles-Orszag A, Millien C, Bouvier G, Bardiaux B, Pehau-Arnaudet G, Klinge K, Podglajen I, Ploy MC, Seifert HS, Nilges M, Chamot-Rooke J, Dumenil G (2015) Neisseria meningitidis type iv pili composed of sequence invariable pilins are masked by multisite glycosylation. PLoS Pathog 11:e1005162

    Google Scholar 

  30. Chen I, Dubnau D (2004) DNA uptake during bacterial transformation. Nat Rev Microbiol 2:241–249

    Article  CAS  Google Scholar 

  31. Maiden MC (2008) Population genomics: diversity and virulence in the Neisseria. Curr Opin Microbiol 11:467–471

    Article  CAS  Google Scholar 

  32. Cehovin A, Simpson PJ, McDowell MA, Brown DR, Noschese R, Pallett M, Brady J, Baldwin GS, Lea SM, Matthews SJ, Pelicic V (2013) Specific DNA recognition mediated by a type IV pilin. Proc Natl Acad Sci U S A 110:3065–3070

    Article  CAS  Google Scholar 

  33. Berry J-L, Cehovin A, McDowell MA, Lea SM, Pelicic V (2013) Functional analysis of the interdependence between DNA uptake sequence and its cognate ComP receptor during natural transformation in Neisseria species. PLoS Genet 9:e1004014

    Google Scholar 

  34. Virji M, Makepeace K, Ferguson DJ, Achtman M, Moxon ER (1993) Meningococcal Opa and Opc proteins: their role in colonization and invasion of human epithelial and endothelial cells. Mol Microbiol 10:499–510

    Article  CAS  Google Scholar 

  35. Stern A, Brown M, Nickel P, Meyer TF (1986) Opacity genes in Neisseria gonorrhoeae: control of phase and antigenic variation. Cell 47:61–71

    Google Scholar 

  36. Sadarangani M, Pollard AJ, Gray-Owen SD (2011) Opa proteins and CEACAMs: pathways of immune engagement for pathogenic Neisseria. FEMS Microbiol Rev 35:498–514

    Google Scholar 

  37. Malorny B, Morelli G, Kusecek B, Kolberg J, Achtman M (1998) Sequence diversity, predicted two-dimensional protein structure, and epitope mapping of neisserial Opa proteins. J Bacteriol 180:1323–1330

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Fox DA, Larsson P, Lo RH, Kroncke BM, Kasson PM, Columbus L (2014) Structure of the Neisserial outer membrane protein Opa(60): loop flexibility essential to receptor recognition and bacterial engulfment. J Am Chem Soc 136:9938–9946

    Article  CAS  Google Scholar 

  39. Leyton DL, Rossiter AE, Henderson IR (2012) From self sufficiency to dependence: mechanisms and factors important for autotransporter biogenesis. Nat Rev Microbiol 10:213–225

    Article  CAS  Google Scholar 

  40. Hadi HA, Wooldridge KG, Robinson K, Ala’Aldeen DA (2001) Identification and characterization of App: an immunogenic autotransporter protein of Neisseria meningitidis. Mol Microbiol 41:611–623

    Google Scholar 

  41. Turner DP, Wooldridge KG, Ala’Aldeen DA (2002) Autotransported serine protease A of Neisseria meningitidis: an immunogenic, surface-exposed outer membrane, and secreted protein. Infect Immun 70:4447–4461

    Google Scholar 

  42. Rawlings ND, Barrett AJ, Bateman A (2012) MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res 40:D343–D350

    Article  CAS  Google Scholar 

  43. Hill DJ, Griffiths NJ, Borodina E, Andreae CA, Sessions RB, Virji M (2015) Identification and therapeutic potential of a vitronectin binding region of meningococcal msf. PLoS One 10:e0124133

    Article  Google Scholar 

  44. Vidarsson G, Overbeeke N, Stemerding AM, van den Dobbelsteen G, van Ulsen P, van der Ley P, Kilian M, van de Winkel JG (2005) Working mechanism of immunoglobulin A1 (IgA1) protease: cleavage of IgA1 antibody to Neisseria meningitidis PorA requires de novo synthesis of IgA1 protease. Infect Immun 73:6721–6726

    Google Scholar 

  45. Roussel-Jazede V, Arenas J, Langereis JD, Tommassen J, van Ulsen P (2014) Variable processing of the IgA protease autotransporter at the cell surface of Neisseria meningitidis. Microbiology 160:2421–2431

    Google Scholar 

  46. Arenas J, Nijland R, Rodriguez Francisco J, Bosma Tom NP, Tommassen J (2012) Involvement of three meningococcal surface-exposed proteins, the heparin-binding protein NhbA, the α-peptide of IgA protease and the autotransporter protease NalP, in initiation of biofilm formation. Mol Microbiol 87:254–268

    Article  Google Scholar 

  47. van Ulsen P, van Alphen L, ten Hove J, Fransen F, van der Ley P, Tommassen J (2003) A Neisserial autotransporter NalP modulating the processing of other autotransporters. Mol Microbiol 50:1017–1030

    Article  Google Scholar 

  48. Roussel-Jazede V, Grijpstra J, van Dam V, Tommassen J, van Ulsen P (2013) Lipidation of the autotransporter NalP of Neisseria meningitidis is required for its function in the release of cell-surface-exposed proteins. Microbiology 159:286–295

    Google Scholar 

  49. Besbes A, Le Goff S, Antunes A, Terrade A, Hong E, Giorgini D, Taha MK, Deghmane AE (2015) Hyperinvasive Meningococci induce intra-nuclear cleavage of the NF-kappaB Protein p65/RelA by meningococcal IgA protease. PLoS Pathog 11:e1005078

    Article  Google Scholar 

  50. Serruto D, Adu-Bobie J, Scarselli M, Veggi D, Pizza M, Rappuoli R, Arico B (2003) Neisseria meningitidis App, a new adhesin with autocatalytic serine protease activity. Mol Microbiol 48:323–334

    Google Scholar 

  51. Khairalla AS, Omer SA, Mahdavi J, Aslam A, Dufailu OA, Self T, Jonsson AB, Georg M, Sjolinder H, Royer PJ, Martinez-Pomares L, Ghaemmaghami AM, Wooldridge KG, Oldfield NJ, Ala’Aldeen DA (2015) Nuclear trafficking, histone cleavage and induction of apoptosis by the meningococcal App and MspA autotransporters. Cell Microbiol 17:1008–1020

    Article  CAS  Google Scholar 

  52. Arenas J, Paganelli FL, Rodríguez-Castaño P, Cano-Crespo S, van der Ende A, van Putten JPM, Tommassen J (2016) Expression of the gene for autotransporter AutB of Neisseria meningitidis Affects biofilm formation and epithelial transmigration. Front Cell Infect Microbiol 6:162

    Google Scholar 

  53. Arenas J, Cano S, Nijland R, van Dongen V, Rutten L, van der Ende A, Tommassen J (2015) The meningococcal autotransporter AutA is implicated in autoaggregation and biofilm formation. Environ Microbiol 17:1321–1337

    Article  CAS  Google Scholar 

  54. van Ulsen P, Adler B, Fassler P, Gilbert M, van Schilfgaarde M, van der Ley P, van Alphen L, Tommassen J (2006) A novel phase-variable autotransporter serine protease, AusI, of Neisseria meningitidis. Microbes Infect 8:2088–2097

    Google Scholar 

  55. Serruto D, Spadafina T, Ciucchi L, Lewis LA, Ram S, Tontini M, Santini L, Biolchi A, Seib KL, Giuliani MM, Donnelly JJ, Berti F, Savino S, Scarselli M, Costantino P, Kroll JS, O’Dwyer C, Qiu J, Plaut AG, Moxon R, Rappuoli R, Pizza M, Arico B (2010) Neisseria meningitidis GNA2132, a heparin-binding protein that induces protective immunity in humans. Proc Natl Acad Sci U S A 107:3770–3775

    Google Scholar 

  56. Del Tordello E, Vacca I, Ram S, Rappuoli R, Serruto D (2014) Neisseria meningitidis NalP cleaves human complement C3, facilitating degradation of C3b and survival in human serum. Proc Natl Acad Sci 111:427

    Google Scholar 

  57. Echenique-Rivera H, Muzzi A, Del Tordello E, Seib KL, Francois P, Rappuoli R, Pizza M, Serruto D (2011) Transcriptome analysis of Neisseria meningitidis in human whole blood and mutagenesis studies identify virulence factors involved in blood survival. PLoS Pathog 7:e1002027

    Google Scholar 

  58. Pizza M, Scarlato V, Masignani V, Giuliani MM, Arico B, Comanducci M, Jennings GT, Baldi L, Bartolini E, Capecchi B, Galeotti CL, Luzzi E, Manetti R, Marchetti E, Mora M, Nuti S, Ratti G, Santini L, Savino S, Scarselli M, Storni E, Zuo P, Broeker M, Hundt E, Knapp B, Blair E, Mason T, Tettelin H, Hood DW, Jeffries AC, Saunders NJ, Granoff DM, Venter JC, Moxon ER, Grandi G, Rappuoli R (2000) Identification of vaccine candidates against serogroup B meningococcus by whole-genome sequencing. Science 287:1816–1820

    Article  CAS  Google Scholar 

  59. Litt DJ, Savino S, Beddek A, Comanducci M, Sandiford C, Stevens J, Levin M, Ison C, Pizza M, Rappuoli R, Kroll JS (2004) Putative vaccine antigens from Neisseria meningitidis recognized by serum antibodies of young children convalescing after meningococcal disease. J Infect Dis 190:1488–1497

    Google Scholar 

  60. Sjölinder M, Altenbacher G, Hagner M, Sun W, Schedin-Weiss S, Sjölinder H (2012) Meningococcal outer membrane protein NhhA triggers apoptosis in macrophages. PLoS One 7:e29586

    Article  Google Scholar 

  61. Wang X, Sjölinder M, Gao Y, Wan Y, Sjölinder H (2016) Immune homeostatic macrophages programmed by the bacterial surface protein NhhA potentiate nasopharyngeal carriage of Neisseria meningitidis. MBio 7:e01670–e01615

    Google Scholar 

  62. Andreae CA, Sessions RB, Virji M, Hill DJ (2018) Bioinformatic analysis of meningococcal Msf and Opc to inform vaccine antigen design. PLoS One 13:e0193940

    Article  Google Scholar 

  63. Vogel U, Taha MK, Vazquez JA, Findlow J, Claus H, Stefanelli P, Caugant DA, Kriz P, Abad R, Bambini S, Carannante A, Deghmane AE, Fazio C, Frosch M, Frosi G, Gilchrist S, Giuliani MM, Hong E, Ledroit M, Lovaglio PG, Lucidarme J, Musilek M, Muzzi A, Oksnes J, Rigat F, Orlandi L, Stella M, Thompson D, Pizza M, Rappuoli R, Serruto D, Comanducci M, Boccadifuoco G, Donnelly JJ, Medini D, Borrow R (2013) Predicted strain coverage of a meningococcal multicomponent vaccine (4CMenB) in Europe: a qualitative and quantitative assessment. Lancet Infect Dis 13:416–425

    Article  Google Scholar 

  64. Fagnocchi L, Biolchi A, Ferlicca F, Boccadifuoco G, Brunelli B, Brier S, Norais N, Chiarot E, Bensi G, Kroll JS, Pizza M, Donnelly J, Giuliani MM, Delany I (2013) Transcriptional regulation of the nadA gene in Neisseria meningitidis impacts the prediction of coverage of a multicomponent meningococcal serogroup B vaccine. Infect Immun 81:560–569

    Google Scholar 

  65. Green LR, Lucidarme J, Dave N, Chan H, Clark S, Borrow R, Bayliss CD (2018) Phase variation of NadA in invasive Neisseria meningitidis isolates impacts on coverage estimates for 4C-MenB, a MenB vaccine. J Clin Microbiol 56:e00204-18

    Google Scholar 

  66. Malito E, Biancucci M, Faleri A, Ferlenghi I, Scarselli M, Maruggi G, Lo Surdo P, Veggi D, Liguori A, Santini L, Bertoldi I, Petracca R, Marchi S, Romagnoli G, Cartocci E, Vercellino I, Savino S, Spraggon G, Norais N, Pizza M, Rappuoli R, Masignani V, Bottomley MJ (2014) Structure of the meningococcal vaccine antigen NadA and epitope mapping of a bactericidal antibody. Proc Natl Acad Sci U S A 111:17128–17133

    Article  CAS  Google Scholar 

  67. Rotman E, Seifert HS (2014) The genetics of Neisseria species. Annu Rev Genet 48:405–431

    Google Scholar 

  68. Moxon R, Bayliss C, Hood D (2006) Bacterial contingency loci: the role of simple sequence DNA repeats in bacterial adaptation. Annu Rev Genet 40:307–333

    Article  CAS  Google Scholar 

  69. McGuinness B, Barlow AK, Clarke IN, Farley JE, Anilionis A, Poolman JT, Heckels JE (1990) Deduced amino acid sequences of class 1 protein (PorA) from three strains of Neisseria meningitidis. Synthetic peptides define the epitopes responsible for serosubtype specificity. J Exp Med 171:1871–1882

    Google Scholar 

  70. Lewis LA, Gipson M, Hartman K, Ownbey T, Vaughn J, Dyer DW (1999) Phase variation of HpuAB and HmbR, two distinct haemoglobin receptors of Neisseria meningitidis DNM2. Mol Microbiol 32:977–989

    Google Scholar 

  71. Srikhanta YN, Fox KL, Jennings MP (2010) The phasevarion: phase variation of type III DNA methyltransferases controls coordinated switching in multiple genes. Nat Rev Microbiol 8:196

    Article  CAS  Google Scholar 

  72. Tauseef I, Harrison OB, Wooldridge KG, Feavers IM, Neal KR, Gray SJ, Kriz P, Turner DP, Ala’Aldeen DA, Maiden MC, Bayliss CD (2011) Influence of the combination and phase variation status of the haemoglobin receptors HmbR and HpuAB on meningococcal virulence. Microbiology 157:1446–1456

    Article  CAS  Google Scholar 

  73. Perkins-Balding D, Ratliff-Griffin M, Stojiljkovic I (2004) Iron transport systems in Neisseria meningitidis. Microbiol Mol Biol Rev 68:154–171

    Google Scholar 

  74. Stojiljkovic I, Hwa V, de Saint Martin L, O’Gaora P, Nassif X, Heffron F, So M (1995) The Neisseria meningitidis haemoglobin receptor: its role in iron utilization and virulence. Mol Microbiol 15:531–541

    Google Scholar 

  75. Sevestre J, Diene SM, Aouiti-Trabelsi M, Deghmane A-E, Tournier I, François P, Caron F, Taha M-K (2018) Differential expression of hemoglobin receptor, HmbR, between carriage and invasive isolates of Neisseria meningitidis contributes to virulence: lessons from a clonal outbreak. Virulence 9:923–929

    Google Scholar 

  76. Lucidarme J, Findlow J, Chan H, Feavers IM, Gray SJ, Kaczmarski EB, Parkhill J, Bai X, Borrow R, Bayliss CD (2013) The distribution and ‘in vivo’ phase variation status of haemoglobin receptors in invasive meningococcal serogroup B disease: genotypic and phenotypic analysis. PLoS One 8:e76932

    Article  CAS  Google Scholar 

  77. Bidmos FA, Chan H, Praekelt U, Tauseef I, Ali YM, Kaczmarski EB, Feavers I, Bayliss CD (2015) Investigation into the antigenic properties and contributions to growth in blood of the meningococcal haemoglobin receptors, HpuAB and HmbR. PLoS One 10:e0133855

    Article  Google Scholar 

  78. Borud B, Barnes GK, Brynildsrud OB, Fritzsonn E, Caugant DA (2018) Genotypic and phenotypic characterization of the O-linked protein glycosylation system reveals high glycan diversity in paired meningococcal carriage isolates. J Bacteriol 200:e00794-17

    Article  Google Scholar 

  79. Barnes GK, Brynildsrud OB, Borud B, Workalemahu B, Kristiansen PA, Beyene D, Aseffa A, Caugant DA (2017) Whole genome sequencing reveals within-host genetic changes in paired meningococcal carriage isolates from Ethiopia. BMC Genomics 18:407

    Article  Google Scholar 

  80. Seib KL, Pigozzi E, Muzzi A, Gawthorne JA, Delany I, Jennings MP, Rappuoli R (2011) A novel epigenetic regulator associated with the hypervirulent Neisseria meningitidis clonal complex 41/44. FASEB J 25:3622–3633

    Google Scholar 

  81. Srikhanta YN, Dowideit SJ, Edwards JL, Falsetta ML, Wu HJ, Harrison OB, Fox KL, Seib KL, Maguire TL, Wang AH, Maiden MC, Grimmond SM, Apicella MA, Jennings MP (2009) Phasevarions mediate random switching of gene expression in pathogenic Neisseria. PLoS Pathog 5:e1000400

    Google Scholar 

  82. Jen FEC, Seib KL, Jennings MP (2014) Phasevarions mediate epigenetic regulation of antimicrobial susceptibility in Neisseria meningitidis. Antimicrob Agents Chemother 58:4219–4221

    Google Scholar 

  83. Clark TA, Murray IA, Morgan RD, Kislyuk AO, Spittle KE, Boitano M, Fomenkov A, Roberts RJ, Korlach J (2012) Characterization of DNA methyltransferase specificities using single-molecule, real-time DNA sequencing. Nucleic Acids Res 40:e29

    Article  CAS  Google Scholar 

  84. Seib KL, Jen FEC, Tan A, Scott AL, Kumar R, Power PM, Chen L-T, Wu H-J, Wang AHJ, Hill D M C, Luyten YA, Morgan RD, Roberts RJ, Maiden M C J, Boitano M, Clark TA, Korlach J, Rao DN, Jennings MP (2015) Specificity of the ModA11, ModA12 and ModD1 epigenetic regulator N(6)-adenine DNA methyltransferases of Neisseria meningitidis. Nucleic Acids Res 43:4150–4162

    Google Scholar 

  85. Davis DJ (1907) Studies in Meningococcus infections. J Infect Dis 4:558–581

    Article  Google Scholar 

  86. Riding D, Corkill NL (1932) Prophylactic vaccination in epidemic meningococcal meningitis. J Hyg (Lond) 32:258–267

    Article  CAS  Google Scholar 

  87. Goldschneider I, Gotschlich EC, Artenstein MS (1969) Human immunity to the meningococcus. I. The role of humoral antibodies. J Exp Med 129:1307–1326

    Article  CAS  Google Scholar 

  88. Gotschlich EC, Goldschneider I, Artenstein MS (1969) Human immunity to the meningococcus. IV. Immunogenicity of group A and group C meningococcal polysaccharides in human volunteers. J Exp Med 129:1367–1384

    Article  CAS  Google Scholar 

  89. Jennings HJ, Lugowski C (1981) Immunochemistry of groups A, B, and C meningococcal polysaccharide-tetanus toxoid conjugates. J Immunol 127:1011–1018

    CAS  PubMed  Google Scholar 

  90. Cruse JM, Lewis RE Jr (1989) Contemporary trends in conjugate vaccine development. Contrib Microbiol Immunol 10:1–10

    CAS  PubMed  Google Scholar 

  91. Balmer P, Borrow R, Miller E (2002) Impact of meningococcal C conjugate vaccine in the UK. J Med Microbiol 51:717–722

    Article  CAS  Google Scholar 

  92. Maiden MC, Ibarz-Pavon AB, Urwin R, Gray SJ, Andrews NJ, Clarke SC, Walker AM, Evans MR, Kroll JS, Neal KR, Ala’aldeen DA, Crook DW, Cann K, Harrison S, Cunningham R, Baxter D, Kaczmarski E, Maclennan J, Cameron JC, Stuart JM (2008) Impact of meningococcal serogroup C conjugate vaccines on carriage and herd immunity. J Infect Dis 197:737–743

    Article  Google Scholar 

  93. Bartoloni A, Norelli F, Ceccarini C, Rappuoli R, Costantino P (1995) Immunogenicity of meningococcal B polysaccharide conjugated to tetanus toxoid or CRM197 via adipic acid dihydrazide. Vaccine 13:463–470

    Article  CAS  Google Scholar 

  94. Frasch CE, Parkes L, McNelis RM, Gotschlich EC (1976) Protection against group B meningococcal disease. I. Comparison of group-specific and type-specific protection in the chick embryo model. J Exp Med 144:319–329

    Article  CAS  Google Scholar 

  95. Sotolongo F, Campa C, Casanueva V, Fajardo EM, Cuevas IE, Gonzalez N (2007) Cuban meningococcal BC vaccine: experiences & contributions from 20 years of application. MEDICC Rev 9:16–22

    PubMed  Google Scholar 

  96. Bjune G, Høiby EA, Grønnesby JK, Arnesen O, Fredriksen JH, Halstensen A, Holten E, Lindbak AK, Nøkleby H, Rosenqvist E (1991) Effect of outer membrane vesicle vaccine against group B meningococcal disease in Norway. Lancet 338:1093–1096

    Article  CAS  Google Scholar 

  97. Oster P, Lennon D, O’Hallahan J, Mulholland K, Reid S, Martin D (2005) MeNZB™: a safe and highly immunogenic tailor-made vaccine against the New Zealand Neisseria meningitidis serogroup B disease epidemic strain. Vaccine 23:2191–2196

    Google Scholar 

  98. Holst J, Feiring B, Naess LM, Norheim G, Kristiansen P, Hoiby EA, Bryn K, Oster P, Costantino P, Taha MK, Alonso JM, Caugant DA, Wedege E, Aaberge IS, Rappuoli R, Rosenqvist E (2005) The concept of “tailor-made”, protein-based, outer membrane vesicle vaccines against meningococcal disease. Vaccine 23:2202–2205

    Article  CAS  Google Scholar 

  99. van den Dobbelsteen G, van Dijken H, Hamstra HJ, Ummels R, van Alphen L, van der Ley P. From HexaMen to NonaMen: expanding a multivalent PorA-based meningococcal outer membrane vesicle vaccine. In: Paper presented at the international pathogenic Neisseria conference, Milwaukee, WI

    Google Scholar 

  100. Luijkx TA, van Dijken H, Hamstra HJ, Kuipers B, van der Ley P, van Alphen L, van den Dobbelsteen G (2003) Relative immunogenicity of PorA subtypes in a multivalent Neisseria meningitidis vaccine is not dependent on presentation form. Infect Immun 71:6367–6371

    Google Scholar 

  101. Giuliani MM, Adu-Bobie J, Comanducci M, Arico B, Savino S, Santini L, Brunelli B, Bambini S, Biolchi A, Capecchi B, Cartocci E, Ciucchi L, Di Marcello F, Ferlicca F, Galli B, Luzzi E, Masignani V, Serruto D, Veggi D, Contorni M, Morandi M, Bartalesi A, Cinotti V, Mannucci D, Titta F, Ovidi E, Welsch JA, Granoff D, Rappuoli R, Pizza M (2006) A universal vaccine for serogroup B meningococcus. Proc Natl Acad Sci U S A 103:10834–10839

    Article  CAS  Google Scholar 

  102. Green LR, Eiden J, Hao L, Jones T, Perez J, McNeil LK, Jansen KU, Anderson AS (2016) Approach to the discovery, development, and evaluation of a novel Neisseria meningitidis serogroup b vaccine. Methods Mol Biol 1403:445–469

    Google Scholar 

  103. Jiang HQ, Hoiseth SK, Harris SL, McNeil LK, Zhu D, Tan C, Scott AA, Alexander K, Mason K, Miller L, DaSilva I, Mack M, Zhao XJ, Pride MW, Andrew L, Murphy E, Hagen M, French R, Arora A, Jones TR, Jansen KU, Zlotnick GW, Anderson AS (2010) Broad vaccine coverage predicted for a bivalent recombinant factor H binding protein based vaccine to prevent serogroup B meningococcal disease. Vaccine 28:6086–6093

    Article  CAS  Google Scholar 

  104. Murphy E, Andrew L, Lee KL, Dilts DA, Nunez L, Fink PS, Ambrose K, Borrow R, Findlow J, Taha MK, Deghmane AE, Kriz P, Musilek M, Kalmusova J, Caugant DA, Alvestad T, Mayer LW, Sacchi CT, Wang X, Martin D, von Gottberg A, du Plessis M, Klugman KP, Anderson AS, Jansen KU, Zlotnick GW, Hoiseth SK (2009) Sequence diversity of the factor H binding protein vaccine candidate in epidemiologically relevant strains of serogroup B Neisseria meningitidis. J Infect Dis 200:379–389

    Google Scholar 

  105. Schneider MC, Prosser BE, Caesar JJ, Kugelberg E, Li S, Zhang Q, Quoraishi S, Lovett JE, Deane JE, Sim RB, Roversi P, Johnson S, Tang CM, Lea SM (2009) Neisseria meningitidis recruits factor H using protein mimicry of host carbohydrates. Nature 458:890–893

    Google Scholar 

  106. Beernink PT, Shaughnessy J, Braga EM, Liu Q, Rice PA, Ram S, Granoff DM (2011) A meningococcal factor H binding protein mutant that eliminates factor H binding enhances protective antibody responses to vaccination. J Immunol 186:3606–3614

    Article  CAS  Google Scholar 

  107. Johnson S, Tan L, van der Veen S, Caesar J, Goicoechea De Jorge E, Harding RJ, Bai X, Exley RM, Ward PN, Ruivo N, Trivedi K, Cumber E, Jones R, Newham L, Staunton D, Ufret-Vincenty R, Borrow R, Pickering MC, Lea SM, Tang CM (2012) Design and evaluation of meningococcal vaccines through structure-based modification of host and pathogen molecules. PLoS Pathog 8:e1002981

    Article  CAS  Google Scholar 

  108. Hollingshead S, Jongerius I, Exley RM, Johnson S, Lea SM, Tang CM (2018) Structure-based design of chimeric antigens for multivalent protein vaccines. Nat Commun 9:1051

    Article  CAS  Google Scholar 

  109. Koeberling O, Seubert A, Santos G, Colaprico A, Ugozzoli M, Donnelly J, Granoff DM (2011) Immunogenicity of a meningococcal native outer membrane vesicle vaccine with attenuated endotoxin and over-expressed factor H binding protein in infant rhesus monkeys. Vaccine 29(29–30):4728–4734

    Google Scholar 

  110. Wu X, Li K, Xie M, Yu M, Tang S, Li Z, Hu S (2018) Construction and protective immunogenicity of DNA vaccine pNMB0315 against serogroup B. Mol Med Rep 17(2):3178–3185

    Google Scholar 

  111. Trotter CL, Lingani C, Fernandez K, Cooper LV, Bita A, Tevi-Benissan C, Ronveaux O, Preziosi MP, Stuart JM (2017) Impact of MenAfriVac in nine countries of the African meningitis belt, 2010–15: an analysis of surveillance data. Lancet Infect Dis 17:867–872

    Article  Google Scholar 

  112. LaForce FM, Djingarey M, Viviani S, Preziosi MP (2018) Successful African introduction of a new Group A meningococcal conjugate vaccine: future challenges and next steps. Hum Vaccin Immunother 14:1098–1102

    Google Scholar 

  113. Epidemic meningitis control in countries of the African meningitis belt, 2016. Wkly Epidemiol Rec 2017;92:145-154.

    Google Scholar 

  114. Diomandé FVK, Djingarey MH, Daugla DM, Novak RT, Kristiansen PA, Collard J-M, Gamougam K, Kandolo D, Mbakuliyemo N, Mayer L, Stuart J, Clark T, Tevi-Benissan C, Perea WA, Preziosi M-P, Marc LaForce F, Caugant D, Messonnier N, Walker O, Greenwood B (2015) Public health impact after the introduction of PsA-TT: the first 4 years. Clin Infect Dis 61:S467–S472

    Article  Google Scholar 

  115. Mustapha MM, Harrison LH (2018) Vaccine prevention of meningococcal disease in Africa: major advances, remaining challenges. Hum Vaccin Immunother 14:1107–1115

    Article  Google Scholar 

  116. Chilukuri SR, Reddy P, Avalaskar N, Mallya A, Pisal S, Dhere RM (2014) Process development and immunogenicity studies on a serogroup ‘X’ Meningococcal polysaccharide conjugate vaccine. Biologicals 42:160–168

    Article  CAS  Google Scholar 

  117. Davila S, Wright VJ, Khor CC, Sim KS, Binder A, Breunis WB, Inwald D, Nadel S, Betts H, Carrol ED, de Groot R, Hermans PW, Hazelzet J, Emonts M, Lim CC, Kuijpers TW, Martinon-Torres F, Salas A, Zenz W, Levin M, Hibberd ML (2010) Genome-wide association study identifies variants in the CFH region associated with host susceptibility to meningococcal disease. Nat Genet 42:772–776

    Article  CAS  Google Scholar 

  118. Caesar JJ, Lavender H, Ward PN, Exley RM, Eaton J, Chittock E, Malik TH, Goiecoechea De Jorge E, Pickering MC, Tang CM, Lea SM (2014) Competition between antagonistic complement factors for a single protein on N. meningitidis rules disease susceptibility. elife 3:04008

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah Hollingshead .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hollingshead, S., Tang, C.M. (2019). An Overview of Neisseria meningitidis. In: Seib, K., Peak, I. (eds) Neisseria meningitidis. Methods in Molecular Biology, vol 1969. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9202-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9202-7_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9201-0

  • Online ISBN: 978-1-4939-9202-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics