Skip to main content

Methods to Determine the Role of Autophagy Proteins in C. elegans Aging

  • Protocol
  • First Online:
Autophagy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1880))

Abstract

This chapter describes methods for the analysis of autophagy proteins in C. elegans aging. We discuss the strains to be considered, the methods for the delivery of double-stranded RNA, and the methods to measure autophagy levels, autophagic flux, and degradation by autophagy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kenyon CJ (2010) The genetics of ageing. Nature 464:504–512

    Article  CAS  PubMed  Google Scholar 

  2. Friedman DB, Johnson TE (1988) A mutation in the age-1 gene in Caenorhabditis elegans lengthens life and reduces hermaphrodite fertility. Genetics 118:75–86

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Kenyon C, Chang J, Gensch E, Rudner A, Tabtiang R (1993) A C. elegans mutant that lives twice as long as wild type. Nature 366:461–464

    Article  CAS  PubMed  Google Scholar 

  4. Dillin A, Hsu AL, Arantes-Oliveira N, Lehrer-Graiwer J, Hsin H, Fraser AG, Kamath RS, Ahringer J, Kenyon C (2002) Rates of behavior and aging specified by mitochondrial function during development. Science 298:2398–2401

    Article  CAS  PubMed  Google Scholar 

  5. Feng J, Bussiere F, Hekimi S (2001) Mitochondrial electron transport is a key determinant of life span in Caenorhabditis elegans. Dev Cell 1:633–644

    Article  CAS  PubMed  Google Scholar 

  6. Lee SS, Lee RY, Fraser AG, Kamath RS, Ahringer J, Ruvkun G (2003) A systematic RNAi screen identifies a critical role for mitochondria in C. elegans longevity. Nat Genet 33:40–48

    Article  CAS  PubMed  Google Scholar 

  7. Hansen M, Taubert S, Crawford D, Libina N, Lee SJ, Kenyon C (2007) Lifespan extension by conditions that inhibit translation in Caenorhabditis elegans. Aging Cell 6:95–110

    Article  CAS  PubMed  Google Scholar 

  8. Syntichaki P, Troulinaki K, Tavernarakis N (2007) eIF4E function in somatic cells modulates ageing in Caenorhabditis elegans. Nature 445:922–926

    Article  CAS  PubMed  Google Scholar 

  9. Syntichaki P, Troulinaki K, Tavernarakis N (2007) Protein synthesis is a novel determinant of aging in Caenorhabditis elegans. Ann N Y Acad Sci 1119:289–295

    Article  CAS  PubMed  Google Scholar 

  10. Apfeld J, O'Connor G, McDonagh T, DiStefano PS, Curtis R (2004) The AMP-activated protein kinase AAK-2 links energy levels and insulin-like signals to lifespan in C. elegans. Genes Dev 18:3004–3009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Greer EL, Dowlatshahi D, Banko MR, Villen J, Hoang K, Blanchard D, Gygi SP, Brunet A (2007) An AMPK-FOXO pathway mediates longevity induced by a novel method of dietary restriction in C. elegans. Curr Biol 17:1646–1656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Klass MR (1977) Aging in the nematode Caenorhabditis elegans: major biological and environmental factors influencing life span. Mech Ageing Dev 6:413–429

    Article  CAS  PubMed  Google Scholar 

  13. Lakowski B, Hekimi S (1998) The genetics of caloric restriction in Caenorhabditis elegans. Proc Natl Acad Sci U S A 95:13091–13096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mair W, Morantte I, Rodrigues AP, Manning G, Montminy M, Shaw RJ, Dillin A (2011) Lifespan extension induced by AMPK and calcineurin is mediated by CRTC-1 and CREB. Nature 470:404–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hsin H, Kenyon C (1999) Signals from the reproductive system regulate the lifespan of C. elegans. Nature 399:362–366

    Article  CAS  PubMed  Google Scholar 

  16. Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. Cell 153:1194–1217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Levine B, Kroemer G (2008) Autophagy in the pathogenesis of disease. Cell 132:27–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Vilchez D, Saez I, Dillin A (2014) The role of protein clearance mechanisms in organismal ageing and age-related diseases. Nat Commun 5:5659

    Article  CAS  PubMed  Google Scholar 

  19. Nixon RA (2013) The role of autophagy in neurodegenerative disease. Nat Med 19:983–997

    Article  CAS  PubMed  Google Scholar 

  20. Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H, Acevedo Arozena A, Adachi H, Adams CM, Adams PD, Adeli K et al (2016) Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 12:1–222

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lu Q et al (2011) The WD40 repeat PtdIns(3)P-binding protein EPG-6 regulates progression of omegasomes to autophagosomes. Dev Cell 21(2):343–357

    Article  CAS  PubMed  Google Scholar 

  22. Stavoe AK et al (2016) KIF1A/UNC-104 transports ATG-9 to regulate neurodevelopment and autophagy at synapses. Dev Cell 38(2):171–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang Y, Yan L, Zhou Z, Yang P, Tian E, Zhang K, Zhao Y, Li Z, Song B, Han J et al (2009) SEPA-1 mediates the specific recognition and degradation of P granule components by autophagy in C. elegans. Cell 136:308–321

    Article  CAS  PubMed  Google Scholar 

  24. Wu F et al (2012) Differential function of the two Atg4 homologues in the aggrephagy pathway in Caenorhabditis elegans. J Biol Chem 287(35):29457–29467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang H et al (2013) The two C. elegans ATG-16 homologs have partially redundant functions in the basal autophagy pathway. Autophagy 9(12):1965–1974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lapierre LR et al (2013) Autophagy genes are required for normal lipid levels in C. elegans. Autophagy 9(3):278–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ames K et al (2017) A non-cell-autonomous role of BEC-1/BECN1/Beclin1 in coordinating cell-cycle progression and stem cell proliferation during germline development. Curr Biol 27(6):905–913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Guo B, Huang X, Zhang P, Qi L, Liang Q, Zhang X, Huang J, Fang B, Hou W, Han J et al (2014) Genome-wide screen identifies signaling pathways that regulate autophagy during Caenorhabditis elegans development. EMBO Rep 15:705–713

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Melendez A, Talloczy Z, Seaman M, Eskelinen EL, Hall DH, Levine B (2003) Autophagy genes are essential for dauer development and life-span extension in C. elegans. Science 301:1387–1391

    Article  CAS  PubMed  Google Scholar 

  30. Tian Y, Li Z, Hu W, Ren H, Tian E, Zhao Y, Lu Q, Huang X, Yang P, Li X et al (2010) C. elegans screen identifies autophagy genes specific to multicellular organisms. Cell 141:1042–1055

    Article  CAS  PubMed  Google Scholar 

  31. Tian E et al (2009) epg-1 functions in autophagy-regulated processes and may encode a highly divergent Atg13 homolog in C. elegans. Autophagy 5(5):608–615

    Article  CAS  PubMed  Google Scholar 

  32. Liang Q et al (2012) The C. elegans ATG101 homolog EPG-9 directly interacts with EPG-1/Atg13 and is essential for autophagy. Autophagy 8(10):1426–1433

    Article  CAS  PubMed  Google Scholar 

  33. Zhao YG et al (2017) The ER-localized transmembrane protein EPG-3/VMP1 regulates SERCA activity to control ER-isolation membrane contacts for autophagosome formation. Mol Cell 67(6):974–989 e6

    Article  CAS  PubMed  Google Scholar 

  34. Wang Z et al (2016) The vici syndrome protein EPG5 Is a Rab7 effector that determines the fusion specificity of autophagosomes with late endosomes/lysosomes. Mol Cell 63(5):781–795

    Article  CAS  PubMed  Google Scholar 

  35. Cullup T et al (2013) Recessive mutations in EPG5 cause Vici syndrome, a multisystem disorder with defective autophagy. Nat Genet 45(1):83–87

    Article  CAS  PubMed  Google Scholar 

  36. Herpin A et al (2015) Defective autophagy through epg5 mutation results in failure to reduce germ plasm and mitochondria. FASEB J 29(10):4145–4161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lin L et al (2013) The scaffold protein EPG-7 links cargo-receptor complexes with the autophagic assembly machinery. J Cell Biol 201(1):113–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yang P, Zhang H (2011) The coiled-coil domain protein EPG-8 plays an essential role in the autophagy pathway in C. elegans. Autophagy 7(2):159–165

    Article  CAS  PubMed  Google Scholar 

  39. Ruck A et al (2011) The Atg6/Vps30/Beclin 1 ortholog BEC-1 mediates endocytic retrograde transport in addition to autophagy in C. elegans. Autophagy 7(4):386–400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Takacs-Vellai K et al (2005) Inactivation of the autophagy gene bec-1 triggers apoptotic cell death in C. elegans. Curr Biol 15(16):1513–1517

    Article  CAS  PubMed  Google Scholar 

  41. Ames K, Melendez A (2017) Non-autonomous autophagy in germline stem cell proliferation. Cell Cycle 16(16):1481–1482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Toth ML et al (2007) Influence of autophagy genes on ion-channel-dependent neuronal degeneration in Caenorhabditis elegans. J Cell Sci 120(Pt 6):1134–1141

    Article  CAS  PubMed  Google Scholar 

  43. Rowland AM et al (2006) Presynaptic terminals independently regulate synaptic clustering and autophagy of GABAA receptors in Caenorhabditis elegans. J Neurosci 26(6):1711–1720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lee HC et al (2012) Depletion of mboa-7, an enzyme that incorporates polyunsaturated fatty acids into phosphatidylinositol (PI), impairs PI 3-phosphate signaling in Caenorhabditis elegans. Genes Cells 17(9):748–757

    Article  CAS  PubMed  Google Scholar 

  45. Lowry J et al (2015) High-throughput cloning of temperature-sensitive caenorhabditis elegans mutants with adult syncytial germline membrane architecture defects. G3 (Bethesda) 5(11):2241–2255

    Article  CAS  Google Scholar 

  46. Silhankova M et al (2010) Wnt signalling requires MTM-6 and MTM-9 myotubularin lipid-phosphatase function in Wnt-producing cells. EMBO J 29(24):4094–4105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Roggo L et al (2002) Membrane transport in Caenorhabditis elegans: an essential role for VPS34 at the nuclear membrane. EMBO J 21(7):1673–1683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hansen M, Chandra A, Mitic LL, Onken B, Driscoll M, Kenyon C (2008) A role for autophagy in the extension of lifespan by dietary restriction in C. elegans. PLoS Genet 4:e24

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Lapierre LR, Gelino S, Melendez A, Hansen M (2011) Autophagy and lipid metabolism coordinately modulate life span in germline-less C. elegans. Curr Biol 21:1507–1514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Toth ML, Sigmond T, Borsos E, Barna J, Erdelyi P, Takacs-Vellai K, Orosz L, Kovacs AL, Csikos G, Sass M et al (2008) Longevity pathways converge on autophagy genes to regulate life span in Caenorhabditis elegans. Autophagy 4:330–338

    Article  CAS  PubMed  Google Scholar 

  51. Vellai T, Takacs-Vellai K, Zhang Y, Kovacs AL, Orosz L, Muller F (2003) Genetics: influence of TOR kinase on lifespan in C. elegans. Nature 426:620

    Article  CAS  PubMed  Google Scholar 

  52. Kang C, You YJ, Avery L (2007) Dual roles of autophagy in the survival of Caenorhabditis elegans during starvation. Genes Dev 21:2161–2171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sato M, Sato K (2011) Degradation of paternal mitochondria by fertilization-triggered autophagy in C. elegans embryos. Science 334(6059):1141–1144

    Article  CAS  PubMed  Google Scholar 

  54. Samokhvalov V, Scott BA, Crowder CM (2008) Autophagy protects against hypoxic injury in C. elegans. Autophagy 4(8):1034–1041

    Article  CAS  PubMed  Google Scholar 

  55. Hashimoto Y, Ookuma S, Nishida E (2009) Lifespan extension by suppression of autophagy genes in Caenorhabditis elegans. Genes Cells 14(6):717–726

    Article  CAS  PubMed  Google Scholar 

  56. Al Rawi S et al (2011) Postfertilization autophagy of sperm organelles prevents paternal mitochondrial DNA transmission. Science 334(6059):1144–1147

    Article  PubMed  CAS  Google Scholar 

  57. Alberti A et al (2010) The autophagosomal protein LGG-2 acts synergistically with LGG-1 in dauer formation and longevity in C. elegans. Autophagy 6(5):622–633

    Article  CAS  PubMed  Google Scholar 

  58. Manil-Segalen M et al (2014) The C. elegans LC3 acts downstream of GABARAP to degrade autophagosomes by interacting with the HOPS subunit VPS39. Dev Cell 28(1):43–55

    Article  CAS  PubMed  Google Scholar 

  59. Kozlowski L et al (2014) The Caenorhabditis elegans HP1 family protein HPL-2 maintains ER homeostasis through the UPR and hormesis. Proc Natl Acad Sci U S A 111(16):5956–5961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Nilsson L, Jonsson E, Tuck S (2011) Caenorhabditis elegans numb inhibits endocytic recycling by binding TAT-1 aminophospholipid translocase. Traffic 12(12):1839–1849

    Article  CAS  PubMed  Google Scholar 

  61. Kostich M, Fire A, Fambrough DM (2000) Identification and molecular-genetic characterization of a LAMP/CD68-like protein from Caenorhabditis elegans. J Cell Sci 113(Pt 14):2595–2606

    CAS  PubMed  Google Scholar 

  62. Gutierrez MG et al (2004) Rab7 is required for the normal progression of the autophagic pathway in mammalian cells. J Cell Sci 117(Pt 13):2687–2697

    Article  CAS  PubMed  Google Scholar 

  63. Jager S et al (2004) Role for Rab7 in maturation of late autophagic vacuoles. J Cell Sci 117(Pt 20):4837–4848

    Article  PubMed  CAS  Google Scholar 

  64. Li W et al (2012) Autophagy genes function sequentially to promote apoptotic cell corpse degradation in the engulfing cell. J Cell Biol 197(1):27–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Grant B, Hirsh D (1999) Receptor-mediated endocytosis in the Caenorhabditis elegans oocyte. Mol Biol Cell 10(12):4311–4326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Schimmoller F, Riezman H (1993) Involvement of Ypt7p, a small GTPase, in traffic from late endosome to the vacuole in yeast. J Cell Sci 106(Pt 3):823–830

    PubMed  Google Scholar 

  67. Zhang H, Chang JT, Guo B, Hansen M, Jia K, Kovacs AL, Kumsta C, Lapierre LR, Legouis R, Lin L et al (2015) Guidelines for monitoring autophagy in Caenorhabditis elegans. Autophagy 11:9–27

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Palmisano NJ, Melendez A (2016) Detecting autophagy in Caenorhabditis elegans embryos using markers of P granule degradation. Cold Spring Harb Protoc 2016(1):pdb.prot086504

    Article  PubMed  Google Scholar 

  69. Zhang G et al (2017) The composition of a protein aggregate modulates the specificity and efficiency of its autophagic degradation. Autophagy 13(9):1487–1495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhang P, Zhang H (2013) Autophagy modulates miRNA-mediated gene silencing and selectively degrades AIN-1/GW182 in C. elegans. EMBO Rep 14(6):568–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Feng Y, He D, Yao Z, Klionsky DJ (2014) The machinery of macroautophagy. Cell Res 24:24–41

    Article  CAS  PubMed  Google Scholar 

  72. Nakatogawa H, Suzuki K, Kamada Y, Ohsumi Y (2009) Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat Rev Mol Cell Biol 10:458–467

    Article  CAS  PubMed  Google Scholar 

  73. Chang JT, Kumsta C, Hellman AB, Adams LM, Hansen M (2017) Spatiotemporal regulation of autophagy during Caenorhabditis elegans aging. elife 6:e18459

    Article  PubMed  PubMed Central  Google Scholar 

  74. Lapierre LR, Kumsta C, Sandri M, Ballabio A, Hansen M (2015) Transcriptional and epigenetic regulation of autophagy in aging. Autophagy 11:867–880

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Melendez A, Hall DH, Hansen M (2008) Monitoring the role of autophagy in C. elegans aging. Methods Enzymol 451:493–520

    Article  CAS  PubMed  Google Scholar 

  76. Jia K, Hart AC, Levine B (2007) Autophagy genes protect against disease caused by polyglutamine expansion proteins in Caenorhabditis elegans. Autophagy 3:21–25

    Article  CAS  PubMed  Google Scholar 

  77. Bai H, Kang P, Hernandez AM, Tatar M (2013) Activin signaling targeted by insulin/dFOXO regulates aging and muscle proteostasis in Drosophila. PLoS Genet 9:e1003941

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Simonsen A, Cumming RC, Brech A, Isakson P, Schubert DR, Finley KD (2008) Promoting basal levels of autophagy in the nervous system enhances longevity and oxidant resistance in adult drosophila. Autophagy 4:176–184

    Article  CAS  PubMed  Google Scholar 

  79. Pyo JO, Yoo SM, Jung YK (2013) The interplay between autophagy and aging. Diabetes Metab J 37:333–339

    Article  PubMed  PubMed Central  Google Scholar 

  80. Kamath RS, Fraser AG, Dong Y, Poulin G, Durbin R, Gotta M, Kanapin A, Le Bot N, Moreno S, Sohrmann M et al (2003) Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421:231–237

    Article  CAS  PubMed  Google Scholar 

  81. Rual JF, Hill DE, Vidal M (2004) ORFeome projects: gateway between genomics and omics. Curr Opin Chem Biol 8:20–25

    Article  CAS  PubMed  Google Scholar 

  82. Pepper AS, Killian DJ, Hubbard EJ (2003) Genetic analysis of Caenorhabditis elegans glp-1 mutants suggests receptor interaction or competition. Genetics 163:115–132

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Jiang H, Fine JP (2007) Survival analysis. Methods Mol Biol 404:303–318

    Article  PubMed  Google Scholar 

  84. Jung SH, Jeong JH (2003) Rank tests for clustered survival data. Lifetime Data Anal 9:21–33

    Article  PubMed  Google Scholar 

  85. Hars ES, Qi H, Ryazanov AG, Jin S, Cai L, Hu C, Liu LF (2007) Autophagy regulates ageing in C. elegans. Autophagy 3:93–95

    Article  CAS  PubMed  Google Scholar 

  86. Gelino S, Chang JT, Kumsta C, She X, Davis A, Nguyen C, Panowski S, Hansen M (2016) Intestinal Autophagy Improves Healthspan and Longevity in C. elegans during Dietary Restriction. PLoS Genet 12:e1006135

    Google Scholar 

  87. Lapierre LR, De Magalhaes Filho CD, McQuary PR, Chu CC, Visvikis O, Chang JT, Gelino S, Ong B, Davis AE, Irazoqui JE, Dillin A, Hansen M (2013) The TFEB orthologue HLH-30 regulates autophagy and modulates longevity in Caenorhabditis elegans. Nat Commun 4:2267

    Article  PubMed  CAS  Google Scholar 

  88. Wang MC, O’Rourke EJ, Ruvkun G (2008) Fat metabolism links germline stem cells and longevity in C. elegans. Science 322:957–960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Felkai S, Ewbank JJ, Lemieux J, Labbe JC, Brown GG, Hekimi S (1999) CLK-1 controls respiration, behavior and aging in the nematode Caenorhabditis elegans. EMBO J 18:1783–1792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Rea SL, Ventura N, Johnson TE (2007) Relationship between mitochondrial electron transport chain dysfunction, development, and life extension in Caenorhabditis elegans. PLoS Biol 5:e259

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Lakowski B, Hekimi S (1996) Determination of life-span in Caenorhabditis elegans by four clock genes. Science 272:1010–1013

    Article  CAS  PubMed  Google Scholar 

  92. Tsang WY, Sayles LC, Grad LI, Pilgrim DB, Lemire BD (2001) Mitochondrial respiratory chain deficiency in Caenorhabditis elegans results in developmental arrest and increased life span. J Biol Chem 276:32240–32246

    Article  CAS  PubMed  Google Scholar 

  93. Sheaffer KL, Updike DL, Mango SE (2008) The Target of Rapamycin pathway antagonizes pha-4/FoxA to control development and aging. Curr Biol 18:1355–1364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Chen D, Li PW, Goldstein BA, Cai W, Thomas EL, Chen F, Hubbard AE, Melov S, Kapahi P (2013) Germline signaling mediates the synergistically prolonged longevity produced by double mutations in daf-2 and rsks-1 in C. elegans. Cell Rep 5:1600–1610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. McQuary PR, Liao CY, Chang JT, Kumsta C, She X, Davis A, Chu CC, Gelino S, Gomez-Amaro RL, Petrascheck M, Brill LM, Ladiges WC, Kennedy BK, Hansen M (2016) C. elegans S6K Mutants Require a Creatine-Kinase-like Effector for Lifespan Extension. Cell Rep 14:2059–2067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Pan KZ, Palter JE, Rogers AN, Olsen A, Chen D, Lithgow GJ, Kapahi P (2007) Inhibition of mRNA translation extends lifespan in Caenorhabditis elegans. Aging Cell 6:111–119

    Article  CAS  PubMed  Google Scholar 

  97. Seo K, Choi E, Lee D, Jeong DE, Jang SK, Lee SJ (2013) Heat shock factor 1 mediates the longevity conferred by inhibition of TOR and insulin/IGF-1 signaling pathways in C. elegans. Aging Cell 12:1073–1081

    Article  CAS  PubMed  Google Scholar 

  98. Kumsta C, Hansen M (2012) C. elegans rrf-1 mutations maintain RNAi efficiency in the soma in addition to the germline. PLoS One 7:e35428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Qadota H, Inoue M, Hikita T, Koppen M, Hardin JD, Amano M, Moerman DG, Kaibuchi K (2007) Establishment of a tissue-specific RNAi system in C. elegans. Gene 400:166–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Bolz DD, Tenor JL, Aballay A (2010) A conserved PMK-1/p38 MAPK is required in caenorhabditis elegans tissue-specific immune response to Yersinia pestis infection. J Biol Chem 285:10832–10840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Cai L, Phong BL, Fisher AL, Wang Z (2011) Regulation of fertility, survival, and cuticle collagen function by the Caenorhabditis elegans eaf-1 and ell-1 genes. J Biol Chem 286:35915–35921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Silva MC, Amaral MD, Morimoto RI (2013) Neuronal reprograming of protein homeostasis by calcium-dependent regulation of the heat shock response. PLoS Genet 9:e1003711

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Melo JA, Ruvkun G (2012) Inactivation of conserved C. elegans genes engages pathogen- and xenobiotic-associated defenses. Cell 149:452–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Espelt MV, Estevez AY, Yin X, Strange K (2005) Oscillatory Ca2+ signaling in the isolated Caenorhabditis elegans intestine: role of the inositol-1,4,5-trisphosphate receptor and phospholipases C beta and gamma. J Gen Physiol 126:379–392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Egan D, Kim J, Shaw RJ, Guan KL (2011) The autophagy initiating kinase ULK1 is regulated via opposing phosphorylation by AMPK and mTOR. Autophagy 7:643–644

    Article  PubMed  CAS  Google Scholar 

  106. Chapin HC, Okada M, Merz AJ, Miler DL (2015) Tissue-specific autophagy responses to aging and stress in C. elegans. Aging (Albany NY) 7(6):419–434

    Article  CAS  Google Scholar 

  107. Kabeya Y, Mizushima N, Yamamoto A, Oshitani-Okamoto S, Ohsumi Y, Yoshimori T (2004) LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation. J Cell Sci 117:2805–2812

    Article  CAS  PubMed  Google Scholar 

  108. Kirisako T, Baba M, Ishihara N, Miyazawa K, Ohsumi M, Yoshimori T, Noda T, Ohsumi Y (1999) Formation process of autophagosome is traced with Apg8/Aut7p in yeast. J Cell Biol 147:435–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Kirisako T, Ichimura Y, Okada H, Kabeya Y, Mizushima N, Yoshimori T, Ohsumi M, Takao T, Noda T, Ohsumi Y (2000) The reversible modification regulates the membrane-binding state of Apg8/Aut7 essential for autophagy and the cytoplasm to vacuole targeting pathway. J Cell Biol 151:263–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Mizushima N, Yamamoto A, Matsui M, Yoshimori T, Ohsumi Y (2004) In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell 15:1101–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Liang Q, Yang P, Tian E, Han J, Zhang H (2012) The C. elegans ATG101 homolog EPG-9 directly interacts with EPG-1/Atg13 and is essential for autophagy. Autophagy 8:1426–1433

    Article  CAS  PubMed  Google Scholar 

  112. Palmisano NJ, Rosario N, Wysocki M, Hong M, Grant B, Meléndez A (2017) The recycling endosome protein RAB-10 promotes autophagic flux and localization of the transmembrane protein ATG-9. Autophagy 13(10):1742–1753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Wilkinson DS, Jariwala JS, Anderson E, Mitra K, Meisenhelder J, Chang JT, Ideker T, Hunter T, Nizet V, Dillin A et al (2015) Phosphorylation of LC3 by the hippo kinases STK3/STK4 is essential for autophagy. Mol Cell 57:55–68

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Work in the Henis-Korenblit laboratory is supported by grants: no. 2013188 from the Binational Science Foundation, no. I-1211-309.13/2012 from the German-Israeli Foundation for Scientific Research and Development, and no. 3-12066 from the Israeli Ministry of Science, Technology and Space, and work in the Meléndez Lab is supported by grants R15GM102846 from the National Institute of Health, a PSC-CUNY Research award, and A.M. was an Ellison Medical Foundation New Scholar in Aging (AG-NS-0521–0).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sivan Henis-Korenblit or Alicia Meléndez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Henis-Korenblit, S., Meléndez, A. (2019). Methods to Determine the Role of Autophagy Proteins in C. elegans Aging. In: Ktistakis, N., Florey, O. (eds) Autophagy. Methods in Molecular Biology, vol 1880. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8873-0_37

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8873-0_37

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8872-3

  • Online ISBN: 978-1-4939-8873-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics