Skip to main content

How to Monitor the Neuroimmune Biological Response in Patients Affected by Immune Alteration-Related Systemic Diseases

  • Protocol
  • First Online:
Psychoneuroimmunology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1781))

Abstract

The clinical management of patients affected by systemic diseases, including cancer and autoimmune diseases, is generally founded on the evaluation of the only markers related to the single disease rather than the biological immuno-inflammatory response of patients, despite the fundamental role of cytokine network in the pathogenesis of cancer and autoimmunity is well known. Cancer progression has appeared to be associated with a progressive decline in the blood levels of the main antitumor cytokines, including IL-2 and IL-12, in association with an increase in those of inflammatory cytokines, including IL-6, TNF-alpha, and IL-1-beta, and immunosuppressive cytokines, namely TGF-beta and IL-10. On the other hand, the severity of the autoimmune diseases has been proven to be greater in the presence of high blood levels of IL-17, TNF-alpha, IL-6, IL-1-beta, IFN-gamma, and IL-18, in association with low levels of TGF-beta and IL-10. However, because of excessive cost and complexity of analyzing the data regarding the secretion of the single cytokines, the relation between lymphocyte-induced immune activation and monocyte-macrophage-mediated immunosuppression has been recently proven to be expressed by the simple lymphocyte-to-monocyte ratio (LMR). The evidence of low LMR values has appeared to correlate with a poor prognosis in cancer and with a disease control in the autoimmune diseases. Moreover, since the in vivo immunoinflammatory response is physiologically under a neuroendocrine modulation, for the evaluation of patient biological response it would be necessary to investigate the function of at least the two main neuroendocrine structures involved in the neuroendocrine modulation of the immune responses, consisting of the hypothalamic-pituitary-adrenal axis and the pineal gland, since the lack of physiological circadian rhythm of cortisol and pineal hormone melatonin has appeared to be associated with a worse prognosis in the human systemic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rubinow DR (1987) Brain, behaviour and immunity: an interactive system. J Natl Cancer Invest Monogr 10:79–82

    Google Scholar 

  2. Zou W (2006) Regulatory T cells, tumor immunity and immunotherapy. Nat Rev Immunol 6:295–307

    Article  CAS  PubMed  Google Scholar 

  3. Antony MH (2003) Psychoneuroimmunology of cancer. Brain Behav Immun 17:84–91

    Article  Google Scholar 

  4. Besedovsky HO, Sorkin E, Muller I (1975) Hormonal changes during immune response. Proc Soc Exp Biol Med 150:466–471

    Article  CAS  PubMed  Google Scholar 

  5. Lissoni P, Resentini M, Mauri R et al (1986) Effects of tetrahydrocannabinol on melatonin secretion in man. Horm Metab Res 18:77–78

    Article  CAS  PubMed  Google Scholar 

  6. Mestroni GJM (1993) The immunoneuronedocrine role of melatonin. J Pineal Res 14:1–10

    Article  Google Scholar 

  7. Brzezinski A (1997) Melatonin in humans. N Engl J Med 336:186–195

    Article  CAS  PubMed  Google Scholar 

  8. Banks RE, Patel PM, Selby PJ (1995) Interleukin-12: a new clinical player in cytokine therapy. Br J Cancer 71:655–659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Grimm EA, Mazumder A, Zhang HZ et al (1982) Lymphokine-activated killer cell phenomenon. J Exp Med 155:1823–1841

    Article  CAS  PubMed  Google Scholar 

  10. Mantovani A, Allavena P, Sica A et al (2008) Cancer-related inflammation. Nature 454:436–444

    Article  CAS  PubMed  Google Scholar 

  11. Kim R, Emi M, Tanabe K et al (2004) The role of Fas ligand and transfroming growth factor beta in tumor progression. Cancer 100:2281–2291

    Article  CAS  PubMed  Google Scholar 

  12. Manfredi B, Sacerdote P, Bianchi M (1993) Evidence for an opioid inhibitory tone on T cell proliferation. J Neuroimmunol 44:43–46

    Article  CAS  PubMed  Google Scholar 

  13. Grotehnermen F (2004) Pharmacology of cannabinoids. Neuroendocrinol Lett 25:14–23

    Google Scholar 

  14. Aswell S, Janetka JW, Zabludoff K (2008) Keeping checkpoin kinase in line: new selective inhibitors in clinical trials. Expert Opin Investig Drugs 17:1331–1340

    Article  Google Scholar 

  15. Chen J, Jiang CC, Jin L, Zhang XD (2016) Regulation of PD-L1: a novel role of pro-survival signaling in cancer. Ann Oncol 27:409–416

    Article  CAS  PubMed  Google Scholar 

  16. Miller RA (1996) The aging immune system: primer and prospectus. Science 273:70–74

    Article  CAS  PubMed  Google Scholar 

  17. Riley V (1981) Psychoneuroendocrine influence on immunocompetence and neoplasia. Science 212:1100–1109

    Article  CAS  PubMed  Google Scholar 

  18. Mormont MC, Levi D (1997) Circadian system alterations during cancer processes: a review. Int J Cancer 70:241–247

    Article  CAS  PubMed  Google Scholar 

  19. Lissoni P, Messina G, Balestra A et al (2008) Efficacy of cancer chemotherapy in relation to synchronization of cortisol rhythm, immune status and psychospiritual profile in metastatic non-small cell lung cancer. In Vivo 22:257–262

    CAS  PubMed  Google Scholar 

  20. Bartsch C, Bartsch H (1999) Melatonin in cancer patients and in tuor-bearing animals. Adv Exp Med Biol 467:247–264

    Article  CAS  PubMed  Google Scholar 

  21. Brivio F, Fumagalli L, Fumagalli G et al (2010) Synchronization of cortisol circadian rhythm by the pineal hormone melatonin in untreatable metastatic solid tumor patients and its possible prognostic signioficance on tumor progression. In Vivo 24:239–242

    CAS  PubMed  Google Scholar 

  22. Lissoni P (1996) Prognostic markers in interleukin-2 therapy. Cancer Biother Radiopharm 11:285–287

    CAS  PubMed  Google Scholar 

  23. Fumagalli L, Lissoni P, Di Felice G (1999) Pretreatment serum markers and lymphocyte response to interleukin-2 therapy. Br J Cancer 80:407–411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Korn T, Bettelli E, Oukka M, Kuchroo VK (2009) IL-17 and Th17 cells. Annu Rev Immunol 27:485–517

    Article  CAS  PubMed  Google Scholar 

  25. Dinarello CA (2007) Interleukin-18 in the pathogenesis of inflammatory diseases. Semin Nephrol 27:98–114

    Article  CAS  PubMed  Google Scholar 

  26. Tian Y, Yuan C, Ma D et al (2011) IL-21 and IL-12 inhibit differentiation of T reg and TH17 cells and enhance cytotoxicity of peripheral blood mononuclear cells in patients with cervical cancer. Int J Gynecol Cancer 21:1672–1678

    Article  PubMed  Google Scholar 

  27. Dennis KL, Blatner NR, Gounari F, Khazaie K (2013) Currents status of IL-10 and regulatory T-cells in cancer. Curr Opin Oncol 25:637–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Brivio F, Fumagalli L, Parolini D et al (2008) T-helper/T-regulatory lymphocyte ratio as a new immunobiological index to quantify the anticancer immune status in cancer patients. In Vivo 22:647–650

    CAS  PubMed  Google Scholar 

  29. Grivennikov SI, Greten FR, Karin M (2010) Immunity, inflammation, and cancer. Cell 295:883–899

    Article  Google Scholar 

  30. Eo WK, Chang HJ, Kwon SH et al (2016) The lymphocyte-to-monocyte ratio predicts patient survival and aggressiveness of ovarian cancer. J Cancer 7:289–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lewis JW, Shavit Y, Terman GV (1983) Apparent involvement of opioids peptides in stress-induced enhancement of tumor growth. Peptides 4:635–638

    Article  CAS  PubMed  Google Scholar 

  32. Hassan ATM, Hassan ZM, Moazzeni SM (2009) Naloxone can improve the antitumor immunity by reducing the CD4+CD25+Foxp3+ regulatory T cells in BALB/c mice. Int J Immunopharmacol 9:1381–1386

    Article  Google Scholar 

  33. McIsaac WM (1961) Formation of 1-methyl-6-methoxy-1,2,3,4-tetrahydro-2-carboline under physiological conditions. Biochem Biophys Acta 52:607–610

    Article  CAS  Google Scholar 

  34. Lissoni P, Messina G, Tantarelli R et al (2017) The psychoneuroimmunotherapy of human immune-mediated systemic diseases, including cancer and autoimmune. J Mol Oncol Res 1(1):7–13

    Google Scholar 

  35. Lissoni P (1999) The pineal gland as central regulator of cytokine network. Neuroendocrinol Lett 20:343–349

    CAS  PubMed  Google Scholar 

  36. Maccarone M, Valensise H, Bari M et al (2001) Progesterone up-regulates anandamide hydrolase in human lymphocytes: role of cytokines and implication in fertility. J Immunol 166:7183–7189

    Article  Google Scholar 

  37. Candelari PV, Rampoldi A, Harbuzariv A et al (2017) Leptin signaling and cancer chemoresistance: perspectives. Word J Clin Oncol 8:106–119

    Article  Google Scholar 

  38. Tesar BM, Shirali AC, Walker WE et al (2009) Aging augments IL-17 T -cell alloimmune responses. Am J Transplant 9:54–63

    Article  CAS  PubMed  Google Scholar 

  39. Dejaco C, Duftner C, Schirmer M (2006) Are regulatory T cells linked with aging? Exp Gerontol 41:339–345

    Article  CAS  PubMed  Google Scholar 

  40. Elenkov IJ, Papanicolaou DA, Wilder RL et al (1996) Modulatory effects of glucocorticoids and cathecolamines on human interleukin-12 and interleukin-10 production: clinical implications. Proc Assoc Am Physicians 108:374–381

    CAS  PubMed  Google Scholar 

  41. Zagon IS, Donahue RN, Bonneau RH et al (2011) T lymphocyte proliferation is suppressed by the opioid growth factor met (5)-enkephalin - opioid growth factor receptor axis: implication for the treatment of autoimmune diseases. Immunobiology 216:579–590

    Article  CAS  PubMed  Google Scholar 

  42. Aringer A, Smolen JS (2003) Complex cytokine effects in a complex autoimmune disease: tumor necrosis factor in systemic lupus erythematosus. Arthritis Res Ther 5:172–177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fujino S, Andoh A, Bamba S et al (2003) Increased expression of interleukin-17 in inflammatory bowel disease. Gut 52:65–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Arican O, Aral M, Sasmaz S et al (2005) Serum levels of TNF-alpha, IFN-gamma, IL-6, IL-8, IL-12, IL-17, and IL-18 in patients with active psoriasis and correlation with disease severity. Mediators Inflamm 2005(5):273–279

    Article  PubMed  PubMed Central  Google Scholar 

  45. Langrish CL, Chen Y, Blumenschein W et al (2005) Divergent pro- and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J Exp Med 201:233–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Dinarello CA (2006) Interleukin 1 and interleukin 18 as mediators of inflammation and the aging process. Am J Clin Nutr 83:447S–455S

    Article  CAS  PubMed  Google Scholar 

  47. Lohr J, Knoechel B, Wang J et al (2006) Role of IL-17 and regulatory T lymphocytes in a systemic autoimmune disease. J Exp Med 203:2785–2791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Paramalingam SS, Thumboo J, Vasoo S et al (2007) In vivo pro- and anti-inflammatory cytokines in normal and patients with rheumatoid arthritis. Ann Acad Med Singapore 36:96–99

    Google Scholar 

  49. Gold R, Luhder F (2008) Interleukin-17. Extended features of a key player in multiple sclerosis. Am J Pathol 172:8–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Katsifis GE, Rekka S, Moutsopoulos NM et al (2009) Systemic and local interleukin-17 and linked cytokines associated with Sjogren’s syndrome immunopathogenesis. Am J Pathol 175:1167–1177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Murugaiyan G, Saha B (2009) Protumor vs antitumor functions of IL-17. J Immunol 183:4169–4175

    Article  CAS  PubMed  Google Scholar 

  52. Harrison OJ, Srinivasan N, Pott J, Schiering C et al (2015) Epithelial-derived IL-18 regulates Th17 cell differentiation and Foxp3+ T reg cell function in the intestine. Mucosal Immunol 8:1226–1236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lee J, Shin EK, Lee SY et al (2014) Oestrogen up-regulates interleukin-21 production by CD4+ T lymphocytes in patients with systemic lupus erythematosus. Immunology 142:573–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Eid RE, Rao DA, Zhou J et al (1982) Interleukin-17 and interferon-gamma are produced concomitantly by human coronary artery-infiltrating T cells and act synergistically on vascular smooth muscle cells. Circulation 119:1424–1432

    Article  Google Scholar 

  55. Zheng C, Zhou XW, Wang JZ (2016) The dual role of cytokines in Alzheimer’s disease: update on interleukins, TNF-alpha, TGF-beta and IFN-gamma. Transl Neurodegener 5:7–18

    Article  PubMed  PubMed Central  Google Scholar 

  56. Ehrke MJ, Mihich E, Berd D et al (1982) Effects of anticancer drugs on the immune system in humans. Semin Oncol 16:230–239

    Google Scholar 

  57. Lissoni P, Brivio F, Fumagalli L et al (2009) Effects of the conventional antitumor therapies: surgery, chemotherapy, radiotherapy and immunotherapy on regulatory T lymphocytes in cancer patients. Anticancer Res 29:1847–1852

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lissoni, P. et al. (2018). How to Monitor the Neuroimmune Biological Response in Patients Affected by Immune Alteration-Related Systemic Diseases. In: Yan, Q. (eds) Psychoneuroimmunology. Methods in Molecular Biology, vol 1781. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7828-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7828-1_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7827-4

  • Online ISBN: 978-1-4939-7828-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics