Skip to main content

Filamentous Fungi (Magnaporthe grisea and Fusarium oxysporum)

  • Protocol
Agrobacterium Protocols Volume 2

Part of the book series: Methods in Molecular Biology ((MIMB,volume 344))

Abstract

A better understanding of fungal biology will facilitate judicious use of beneficial fungi and will also advance our efforts to control pathogenic fungi. Molecular studies of fungal biology have been greatly aided by transformation-mediated mutagenesis techniques. Transformation via nonhomologous integration of plasmid DNA bearing a selectable marker (e.g., antibiotic resistance gene) has been widely used for the random insertional mutagenesis of fungi—as an alternative to chemical and radiation mutagens—mainly because the integration of plasmid into the genome provides a convenient tag for subsequent identification and isolation of the mutated gene. Homologous recombination between a target gene on the chromosome and the introduced DNA carrying its mutant allele results in targeted gene knock-out. An important advance in fungal transformation methodology is the development of Agrobacterium tumefaciens-mediated transformation (ATMT) protocols for fungi. ATMT has been successfully applied to a phylogenetically diverse group of fungi and offers a number of advantages over conventional transformation techniques in both the random insertional mutagenesis and targeted gene knock-out. In this chapter, we describe ATMT protocols and vectors for fungal gene manipulation using two plant pathogenic fungi, Magnaporthe grisea and Fusarium oxysporum, as target organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kang, S. and Dobinson, K.F. (2004) Molecular and genetic basis of plant-fungal pathogen interactions. In: Fungal Genomics (Arora, D.K. and Khachatourians, G. G., eds.), Elsevier Science, Dordrecht, The Netherlands, pp. 59–97.

    Google Scholar 

  2. Kang, S. and Metzenberg, R.L. (1993) Insertional mutagenesis in Neurospora crassa: Cloning and molecular analysis of the preg + gene controlling the activity of the transcriptional activator NUC-1. Genetics 133, 193–202.

    PubMed  CAS  Google Scholar 

  3. Linnemannstáns, P., Vob, T., Hedden, P., Gaskin, P., and Tudzynski, B. (1999) Deletions in the gibberellin biosynthesis gene cluster of Gibberella fujikuroi by restriction enzyme-mediated integration and conventional transformation-mediated mutagenesis. Appl. Env. Microbiol. 65, 2558–2564.

    Google Scholar 

  4. Lu, S., Lyngholm, L., Yang, G., Bronson, C., and Yoder, O.C. (1994) Tagged mutations at the Tox1 locus of Cochliobolus heterostrophus by restriction enzymemediated integration. Proc. Natl. Acad. Sci. USA 91, 12,649–12,653.

    Article  PubMed  CAS  Google Scholar 

  5. Sweigard, J.A., Carroll, A.M., Farrall, L., Chumley, F.G., and Valent, B. (1998) Magnaporthe grisea pathogenicity genes obtained through insertional mutagenesis. Mol. Plant-Microbe Interact. 11, 404–412.

    Article  PubMed  CAS  Google Scholar 

  6. Bundock, P., den Dulk-Ras, A., Beijersbergen, A., and Hooykaas, P.J.J. (1995) Trans-kingdom T-DNA transfer from Agrobacterium tumefaciens to Saccharomyces cerevisiae. EMBO J. 14, 3206–3214.

    PubMed  CAS  Google Scholar 

  7. Abuodeh, R.O., Orbach, M.J., Mandel, M.A., Das, A., and Galgiani, J.N. (2000) Genetic transformation of Coccidioides immitis facilitated by Agrobacterium tumefaciens. J. Infect. Dis. 181, 2106–2110.

    Article  PubMed  CAS  Google Scholar 

  8. Campoy, S., Pérez, F., Martín, F., Gutiérrez, S., and Liras, P. (2003) Stable transformants of the azaphilone pigment-producing Monascus purpureus obrtained by protoplast transformation and Agrobacterium-mediated DNA transfer. Curr. Genet. 43, 447–452.

    Article  PubMed  CAS  Google Scholar 

  9. Chen, X., Stone, M., Schlagnhaufer, C., and Romaine, C.P. (2000) A fruiting body tissue method for efficient Agrobacterium-mediated transformation of Agaricus bisporus. Appl. Environ. Microbiol. 66, 4510–4513.

    Article  PubMed  CAS  Google Scholar 

  10. Combier, J.-P., Melayah, D., Raffier, C., Gay, G., and Marmeisse, R. (2003) Agrobacterium tumefaciens-mediated transformation as a tool for insertional mutagenesis in the symbiotic ectomycorrhizal fungus Hebeloma cylindrosporum. FEMS Microbiol. Lett. 220, 141–148.

    Article  PubMed  CAS  Google Scholar 

  11. Covert, S.F., Kapoor, P., Lee, M., Briley, A., and Nairn, C.J. (2001) Agrobacterium tumefaciens-mediated transformation of Fusarium circinatum. Mycol. Res. 105, 259–264.

    Article  CAS  Google Scholar 

  12. de Groot, M.J.A., Bundock, P., Hooykaas, P.J.J., and Beijersbergen, A.G.M. (1998) Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nat. Biotechnol. 16, 839–842.

    Article  PubMed  Google Scholar 

  13. Dobinson, K.F., Grant, S.J., and Kang, S. (2004) Cloning and targeted disruption, via Agrobacterium tumefaciens-mediated transformation, of a trypsin protease gene from the vascular wilt fungus Verticillium dahliae. Curr. Genet. 45, 104–110.

    Article  PubMed  CAS  Google Scholar 

  14. Gardiner, D.M. and Howlett, B.J. (2004) Negative selection using thymidine kinase increases the efficiency of recovery of transformants with targeted genes in the filamentous fungus Leptosphaeria maculans. Curr. Genet. 45, 249–255.

    Article  PubMed  CAS  Google Scholar 

  15. Gouka, R.J., Gerk, C., Hooykaas, P.J.J., et al. (1999) Transformation of Aspergillus awamori by Agrobacterium tumefaciens-mediated homologous recombination. Nat. Biotechnol. 17, 598–601.

    Article  PubMed  CAS  Google Scholar 

  16. Leclerque, A., Wan, H., Abschütz, A., et al. (2004) Agrobacterium-mediated insertional mutagenesis (AIM) of the entomopathogenic fungus Beauveria bassiana. Curr. Genet. 45, 111–119.

    Article  PubMed  CAS  Google Scholar 

  17. Malonek, S. and Meinhardt, F. (2001) Agrobacterium tumefaciens-mediated genetic transformation of the phytopathogenic ascomycete Calonectria morganii. Curr. Genet. 40, 152–155.

    Article  PubMed  CAS  Google Scholar 

  18. Michielse, C.B., Salim, K., Ragas, P., et al. (2004) Development of a system for integrative and stable transformation of the zygomycete Rhizopus oryzae by Agrobacterium-mediated transformation. Mol. Gen. Genom. 271, 499–510.

    Article  CAS  Google Scholar 

  19. Mullins, E., Romaine, C.P., Chen, X., Geiser, D., Raina, R., and Kang, S. (2001) Agrobacterium tumefaciens-mediated transformation of Fusarium oxysporum: An efficient tool for insertional mutagenesis and gene transfer. Phytopathology 91, 173–180.

    Article  PubMed  CAS  Google Scholar 

  20. Rho, H., Kang, S., and Lee, Y. (2001) Agrobacterium tumefaciens mediated transformation of the plant pathogenic fungus Magnaporthe grisea. Mol. Cells 12, 407–411.

    PubMed  CAS  Google Scholar 

  21. Sullivan, T.D., Rooney, P.J., and Klein, B.S. (2002) Agrobacterium tumefaciens integrates transfer DNA into single chromosomal sites of dimorphic fungi and yields homokaryotic progeny from multinucleate yeast. Eukaryotic Cell 1, 895–905.

    Article  PubMed  CAS  Google Scholar 

  22. Zeilinger, S. (2004) Gene disruption in Trichoderma atrovirde via Agrobacterium-mediated transformation. Curr. Genet. 45, 54–60.

    Article  PubMed  CAS  Google Scholar 

  23. Zhang, A., Lu, P., Dahl-Roshak, A.M., et al. (2003) Efficient disruption of a polyketide synthase gene (pks1) required for melanine synthesis through Agrobacterium-mediated transformation of Glarea lozoyensis. Mol. Gen. Genomics 268, 645–655.

    CAS  Google Scholar 

  24. Zwiers, L.-H. and De Waard, M.A. (2001) Efficient Agrobacterium tumefaciens-mediated gene disruption in the phytopathogen Mycosphaerella graminicola. Curr. Genet. 39, 388–393.

    Article  PubMed  CAS  Google Scholar 

  25. Michielse, C.B., Ram, A.F.J., Hooykaas, P.J.J., and Van den Hondel, C.A.M.J.J. (2004) Role of bacterial virulence proteins in Agrobacterium-mediated transformation of Aspergillus awamori. Fungal Genet. Biol. 41, 571–578.

    Article  PubMed  CAS  Google Scholar 

  26. Bundock, P., Mroczek, K., Winkler, A.A., Steensma, H.Y., and Hooykaas, P.J.J. (1999) T-DNA from Agrobacterium tumefaciens as an efficient tool for gene targeting in Kluyveromyces lactis. Mol. Gen. Genet. 261, 115–121.

    Article  PubMed  CAS  Google Scholar 

  27. Khang, C., Park, S., Lee, Y., and Kang, S. (2005) A dual selection based, targeted gene replacement method for Magnaporthe grisea and Fusarium oxysporum. Fungal Genet. Biol. 42, 483–492.

    Article  PubMed  CAS  Google Scholar 

  28. Park, S.G., Kim, S.O., Koh, H.J., and Lee, Y.H. (2000) A blast lesion mimic mutant of rice. In: Advances in Rice Blast (Tharreau, D., Lebrun, M.H., Talbot, N.J., and Notteghem, J.L., eds.), Kluwer Academic Press, Dordrecht, The Netherlands, pp. 79–85.

    Google Scholar 

  29. Valent, B., Crawford, M.S., Weaver, C.G., and Chumley, F.G. (1986) Genetic studies of fertility and pathogenicity in Magnaporthe grisea (Pyricularia oryzae). Iowa State J. Res. 60, 569–594.

    Google Scholar 

  30. Hellens, R., Mullineaux, P., and Klee, H. (2000) A guide to Agrobacterium binary Ti vectors. Trends Plant Sci. 5, 446–451.

    Article  PubMed  CAS  Google Scholar 

  31. Fisher, N.L., Burgess, L.W., Toussoun, T.A., and Nelson, P.E. (1982) Carnation leaves as a substrate and for preserving cultures of Fusarium species. Phytopathology 72, 151–153.

    Article  Google Scholar 

  32. Xu, J. and Hamer, J.E. (1995) Assessment of Magnaporthe grisea mating type by spore PCR. Fungal Genet. Newsletter 42, 80.

    Google Scholar 

  33. Liu, Y.-G. and Whittier, R.F. (1995) Thermal Asymmetric Interlaced PCR: Automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics 25, 674–681.

    Article  PubMed  CAS  Google Scholar 

  34. Hellens, R.P., Edwards, E.A., Leyland, N.R., Bean, S., and Mullineaux, P.M. (2000) pGreen: a versatile and flexible binary vector for Agrobacterium-mediated plant transformation. Plant Mol. Biol. 42, 819–832.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Khang, C.H., Park, SY., Rho, HS., Lee, YH., Kang, S. (2006). Filamentous Fungi (Magnaporthe grisea and Fusarium oxysporum). In: Wang, K. (eds) Agrobacterium Protocols Volume 2. Methods in Molecular Biology, vol 344. Humana Press. https://doi.org/10.1385/1-59745-131-2:403

Download citation

  • DOI: https://doi.org/10.1385/1-59745-131-2:403

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-843-0

  • Online ISBN: 978-1-59745-131-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics