Skip to main content

PCR-Based Methods for Mutation Detection

  • Chapter
Molecular Diagnostics

Abstract

Although many, even most, methods of mutation detection depend on polymerase chain reaction (PCR), in the majority of techniques PCR itself does not detect the actual mutation. Rather, PCR generates an amplicon that is then analyzed by some other method to find possible mutations within the ampli-con, such as conformation-based techniques like single-stranded conformational polymorphism (SSCP) analysis, denaturing gradient gel electrophoresis (DGGE), or sequencing. However, there are some methods in which a modified PCR acts as the primary mutation-detection system, although some type of electrophoresis might be needed to separate the subsequent amplicons. These include real-time PCR, the amplification refractory mutation system (ARMS), quantitative fluorescent PCR (QF-PCR), or a derivative of the oligoligation assay, multiplex ligation-dependent probe amplification (MLPA). Also discussed is the single-nucleotide primer extension assay and a proprietary derivative of it called Pronto™. Because it uses a DNA polymerase in a post-PCR extension step, it can be deemed to fall into the group of PCR-based methods of mutation detection. A primary limitation of these methods is that, with a few exceptions, they are only suitable for testing for mutations that have been previously detected and characterized by other techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aarskog, N. K. and Vedeler, C. A. Real-time quantitative polymerase chain reaction. Hum. Genet. 107:494–498, 2000.

    Article  CAS  PubMed  Google Scholar 

  2. Klein, D. Quantification using real-time PCR technology: applications and limitations. Trends Mol. Med. 8:257–260, 2002.

    Article  CAS  PubMed  Google Scholar 

  3. Zimmermann, B., Holzgreve, W., Wenzel, F., and Hahn, S. Novel real-time quantitative PCR test for trisomy 21. Clin. Chem. 48:362–363, 2002.

    CAS  PubMed  Google Scholar 

  4. Yang, J. H., Lai, J. P., Douglas, S. D., Metzger, D., Zhu, X. H., and Ho, W. Z. Real-time RT-PCR for quantitation of hepatitis C virus RNA. J. Virol. Methods 102:119–128, 2002.

    Article  CAS  PubMed  Google Scholar 

  5. Emig, M., Saussele, S., Wittor, H., et al. Accurate and rapid analysis of residual disease in patients with CML using specific fluorescent hybridization probes for real time quantitative RT-PCR. Leukemia 13:1825–1832, 1999.

    Article  CAS  PubMed  Google Scholar 

  6. Wittwer, C. T., Herrmann, M. G., Gundry, C. N., and Elenitoba-Johnson, K. S. Real-time multiplex PCR assays. Methods 25:430–442, 2001.

    Article  CAS  PubMed  Google Scholar 

  7. van der Velden, V. H., Hochhaus, A., Cazzaniga, G., et al Detection of minimal residual disease in hematologic malignancies by real-time quantitative PCR: principles, approaches, and laboratory aspects. Leukemia 17:1013–1034, 2003.

    Article  CAS  PubMed  Google Scholar 

  8. Wilhelm, J., Reuter, H., Tews, B., Pingoud, A., and Hahn, M. Detection and quantification of insertion/deletion variations by allele-specific real-time PCR: application for genotyping and chimerism analysis. Biol. Chem. 383:1423–1433, 2002.

    Article  CAS  PubMed  Google Scholar 

  9. Tiemann, C., Vogel, A., Dufaux, B., Zimmer, M., Krone, J. R., and Hagedorn, H. J. Rapid DNA typing of HLA-B27 allele by real-time PCR using lightcycler technology. Clin. Lab. 47:131–134, 2001.

    CAS  PubMed  Google Scholar 

  10. Donohoe, G. G., Laaksonen, M., Pulkki, K., Ronnemaa, T., and Kairisto, V. Rapid single-tube screening of the C282Y hemochro-matosis mutation by real-time multiplex allele-specific PCR without fluorescent probes. Clin. Chem. 46:1540–1547, 2000.

    CAS  PubMed  Google Scholar 

  11. Livak, K. J. Allelic discrimination using fluorogenic probes and the 5’ nuclease assay. Genet. Anal.: Biomol. Eng. 14:143–149, 1999.

    Article  CAS  Google Scholar 

  12. Abravaya, K., Huff, J., Marshall, R., et al. Molecular beacons as diagnostic tools: technology and applications. Clin. Chem. Lab. Med. 41:468–474, 2003.

    Article  CAS  PubMed  Google Scholar 

  13. Broude, N. E. Stem-loop oligonucleotides: a robust tool for molecular biology and biotechnology. Trends Biotechnol. 20:249–256, 2002.

    Article  CAS  PubMed  Google Scholar 

  14. Tapp, I., Malmberg, L., Rennel, E., Wik, M., and Syvanen, A. C. Homogeneous scoring of single-nucleotide polymorphisms: comparison of the 5’-nuclease TaqMan assay and Molecular Beacon probes. Biotechniques 28:732–738, 2000.

    CAS  PubMed  Google Scholar 

  15. Tsourkas, A., Behlke, M. A., Rose, S. D., and Bao, G. Hybridization kinetics and thermodynamics of molecular beacons. Nucleic Acids Res. 31:1319–1330, 2003.

    Article  CAS  PubMed  Google Scholar 

  16. Ramachandran, A., Zhang, M., Goad, D., Olah, G., Malayer, J. R., and El-Rassi, Z. Capillary electrophoresis and fluorescence studies on molecular beacon-based variable length oligonucleotide target discrimination. Electrophoresis 24:70–77, 2003.

    Article  CAS  PubMed  Google Scholar 

  17. Neoh, S. H., Brisco, M. J., Firgaira, F. A., Trainor, K. J., Turner, D. R., and Morley, A. A. Rapid detection of the factor V Leiden (1691 G>A) and haemochromatosis (845 G>A) mutation by fluorescence resonance energy transfer (FRET) and real time PCR. J. Clin. Pathol. 52:766–769, 1999.

    Article  CAS  PubMed  Google Scholar 

  18. Wabuyele, M. B., Farquar, H., Stryjewski, W., et al. Approaching real-time molecular diagnostics: single-pair fluorescence resonance energy transfer (spFRET) detection for the analysis of low abundant point mutations in K-ras oncogenes. J. Am. Chem. Soc. 125:6937– 6945, 2003.

    Article  CAS  PubMed  Google Scholar 

  19. Whitcombe, D., Theaker, J., Guy, S. P., Brown, T, and Little, S. Detection of PCR products using self-probing amplicons and fluorescence. Nat. Biotechnol. 17:804–807, 1999.

    Article  CAS  PubMed  Google Scholar 

  20. Whitcombe, D., Kelly, S., Mann, J., Theaker, J., Jones, C., and Little, S. Scorpion primers—a novel method for use in single tube genotyping. Am. J. Hum. Genet. 65:2333, 1999.

    Google Scholar 

  21. Thelwell, N., Millington, S., Solinas, A., Booth, J., and Brown, T. Mode of action and application of Scorpion primers to mutation detection. Nucleic Acids Res. 28:3752–3761, 2000.

    Article  CAS  PubMed  Google Scholar 

  22. Brown, L. J., McKeen, C. M., Mellor, J. M., Nicol, J. T., and Brown, T. Synthesis of fluorophore and quencher monomers for use in Scorpion primers and nucleic acid structure probes. Organ. Biomol. Chem. 1:2267–2275, 2003.

    Article  Google Scholar 

  23. Solinas, A., Brown, L. J., McKeen, C., et al. Duplex Scorpion primers in SNP analysis and FRET applications. Nucleic Acids Res. 29:E96, 2001.

    Article  CAS  PubMed  Google Scholar 

  24. Cunnick, G. H., Jiang, W. G., Gomez, K. F., and Mansel, R. E. Lymphangiogenesis quantification using quantitative PCR and breast cancer as a model. Biochem. Biophys. Res. Commun. 288: 1043–1046, 2001.

    Article  CAS  PubMed  Google Scholar 

  25. Saha, B. K., Tian, B., and Bucy, R. P. Quantitation of HIV-1 by realtime PCR with a unique fluorogenic probe. J. Virol. Methods 93:33–42, 2001.

    Article  CAS  PubMed  Google Scholar 

  26. Taveau, M., Stockholm, D., Spencer, M., and Richard, I. Quantification of splice variants using molecular beacon or scorpion primers. Anal. Biochem. 305:227–235, 2002.

    Article  CAS  PubMed  Google Scholar 

  27. Bates, J. A. and Taylor, E. J. A. Scorpion ARMS primers for SNP real-time PCR detection and quantification of Pyrenophora teres. Mol. Plant Pathol. 2:275–280, 2001.

    Article  CAS  PubMed  Google Scholar 

  28. Terry, C. F., Shanahan, D. J., Ballam, L. D., Harris, N., McDowell, D. G., and Parkes, H. C. Real-time detection of genetically modified soya using Lightcycler and ABI 7700 platforms with TaqMan, Scorpion, and SYBR Green I chemistries. J. AOAC Int. 85:938–944, 2002.

    CAS  PubMed  Google Scholar 

  29. Frei, K., Szuhai, K., Lucas, T., et al. Connexin 26 mutations in cases of sensorineural deafness in eastern Austria. Eur. J. Hum. Genet. 10:427–432, 2002.

    Article  CAS  PubMed  Google Scholar 

  30. Marras, S. A., Kramer, F. R., and Tyagi, S. Multiplex detection of single-nucleotide variations using molecular beacons. Genet. Anal. 14:151–156, 1999.

    CAS  PubMed  Google Scholar 

  31. Jebbink, J., Bai, X., Rogers, B. B., Dawson, D. B., Scheuermann, R. H., and Domiati-Saad, R. Development of real-time PCR assays for the quantitative detection of Epstein–Barr virus and cytomegalovirus, comparison of TaqMan probes, and molecular beacons. J. Mol. Diagn. 5:15–20, 2003.

    CAS  PubMed  Google Scholar 

  32. Li, Y., Zimmermann, B., Zhong, X. Y., Gupta, A. K., Holzgreve, W., and Hahn, S. Determination of RHD zygosity using real-time quantitative PCR. Swiss Med. Wkly. 133:442–445, 2003.

    CAS  PubMed  Google Scholar 

  33. Wilke, K., Duman, B., and Horst, J. Diagnosis of haploidy and triploidy based on measurement of gene copy number by real-time PCR. Hum. Mutat. 16:431–436, 2000.

    Article  CAS  PubMed  Google Scholar 

  34. Trinh, B. N., Long, T. I., and Laird, P. W. DNA Methylation analysis by MethyLight technology. Methods 25:456–462, 2001.

    Article  CAS  PubMed  Google Scholar 

  35. Eads, C. A., Danenberg, K. D., Kawakami, K., et al. MethyLight: a high-throughput assay to measure DNA methylation. Nucleic Acids Res. 28:E32, 2000.

    Article  CAS  PubMed  Google Scholar 

  36. Eads, C. A., Lord, R. V., Wickramasinghe, K., et al. Epigenetic patterns in the progression of esophageal adenocarcinoma. Cancer Res. 61:3410–3418, 2001.

    CAS  PubMed  Google Scholar 

  37. Elsayed, S., Chow, B. L., Hamilton, N. L., Gregson, D. B., Pitout, J. D., and Church, D. L. Development and validation of a molecular beacon probe-based real-time polymerase chain reaction assay for rapid detection of methicillin resistance in Staphylococcus aureus. Arch. Pathol. Lab. Med. 127:845–849, 2003.

    CAS  PubMed  Google Scholar 

  38. Szuhai, K., Sandhaus, E., Kolkman-Uljee, S. M., et al. A novel strategy for human papillomavirus detection and genotyping with SybrGreen and molecular beacon polymerase chain reaction. Am. J. Pathol. 159:1651–1660, 2001.

    CAS  PubMed  Google Scholar 

  39. Hollox, E. J., Atia, T., Cross, G., Parkin, T., and Armour, J. A. High throughput screening of human subtelomeric DNA for copy number changes using multiplex amplifiable probe hybridisation (MAPH). J. Med. Genet. 39:790–795, 2002.

    Article  CAS  PubMed  Google Scholar 

  40. Newton, C. R., Graham, A., Heptinstall, L. E., et al. Analysis of any point mutation in DNA. The amplification refractory mutation system (ARMS). Nucleic Acids Res. 17:2503–2516, 1989.

    Article  CAS  PubMed  Google Scholar 

  41. Wu, D. Y., Ugozzoli, L., Pal, B. K., and Wallace, R. B. Allele-specific enzymatic amplification of beta-globin genomic DNA for diagnosis of sickle cell anemia. Proc. Natl. Acad. Sci. USA 86:2757–2760, 1989.

    Article  CAS  PubMed  Google Scholar 

  42. Sommer, S. S., Cassady, J. D., Sobell, J. L., and Bottema, C. D. A novel method for detecting point mutations or polymorphisms and its application to population screening for carriers of phenylketonuria. Mayo Clin. Proc. 64:1361–1372, 1989.

    CAS  PubMed  Google Scholar 

  43. Kwok, S., Kellogg, D. E., McKinney, N., et al. Effects of primer–template mismatches on the polymerase chain reaction: human immunodeficiency virus type 1 model studies. Nucleic Acids Res. 18:999–1005, 1990.

    Article  CAS  PubMed  Google Scholar 

  44. Chiu, R. W., Murphy, M. F., Fidler, C., Zee, B. C., Wainscoat, J. S., and Lo, Y. M. Determination of RhD zygosity: comparison of a double amplification refractory mutation system approach and a multiplex real-time quantitative PCR approach. Clin. Chem. 47:667–672, 2002.

    Google Scholar 

  45. Rust, S., Funke, H., and Assmann, G. Mutagenically separated PCR (MS-PCR): a highly specific one step procedure for easy mutation detection. Nucleic Acids Res. 21:3623–3629, 1993.

    Article  CAS  PubMed  Google Scholar 

  46. Schluter, B., Erren, M., Schotte, H., Junker, R., Rust, S., and Assmann, G. The mutagenically separated polymerase chain reaction is a rapid and reliable method for genotyping of the tumour necrosis factor-alpha promoter polymorphism (–308 G/A). Clin. Chim. Acta. 320:135–138, 2002.

    CAS  PubMed  Google Scholar 

  47. Purandare, S. M., Cawthon, R., Nelson, L. M., et al. Genotyping of PCR-based polymorphisms and linkage-disequilibrium analysis at the NF1 locus. Am. J. Hum. Genet. 59:159–166, 1996.

    CAS  PubMed  Google Scholar 

  48. Myint, L., Ariyoshi, K., Yan, H., et al. Mutagenically separated PCR assay for rapid detection of M41L and K70R zidovudine resistance mutations in CRF01_AE (subtype E) human immunodeficiency virus type 1. Antimicrob. Agents Chemother. 46:3861–3868, 2002.

    Article  CAS  Google Scholar 

  49. Chang, J. G., Liu, H. J., Huang, J. M., Yang, T. Y., and Chang, C. P. Multiplex mutagenically separated PCR: diagnosis of beta-thalassemia and hemoglobin variants. Biotechniques 22:520– 527, 1997.

    CAS  PubMed  Google Scholar 

  50. Ferrie, R. M., Schwarz, M. J., Robertson, N. H., et al. Development, multiplexing, and application of ARMS tests for common mutations in the CFTR gene. Am. J. Hum. Genet. 51:251–262, 1992.

    CAS  PubMed  Google Scholar 

  51. Cheadle, J., Myring, J., al-Jader, L., and Meredith, L. Mutation analysis of 184 cystic fibrosis families in Wales. J. Med. Genet. 29:642–646, 1992.

    Article  CAS  PubMed  Google Scholar 

  52. Kobayashi, K., Knowles, M. R., Boucher, R. C., O’Brien, W. E., and Beaudet, A. L. Benign missense variations in the cystic fibrosis gene. Am. J. Hum. Genet. 47:611–615, 1990.

    CAS  PubMed  Google Scholar 

  53. Butler, J. M., McCord, B. R., Jung, J. M., Wilson, M. R., Budowle, B., and Allen, R. O. Quantitation of polymerase chain reaction products by capillary electrophoresis using laser fluorescence. J. Chromatogr. B. Biomed. Appl. 658:271–280, 1994.

    Article  CAS  PubMed  Google Scholar 

  54. Pertl, B., Yau, S. C., Sherlock, J., Davies, A. F., Mathew, C. G., and Adinolfi, M. Rapid molecular method for prenatal detection of Down’s syndrome. Lancet 343:1197–1198, 1994.

    Article  CAS  PubMed  Google Scholar 

  55. Adinolfi, M., Pertl, B., and Sherlock, J. Rapid detection of aneuploi-dies by microsatellite and the quantitative fluorescent polymerase chain reaction. Prenat. Diagn. 17:1299–1311, 1997.

    Article  CAS  PubMed  Google Scholar 

  56. Pertl, B., Kopp, S., Kroisel, P. M., Tului, L., Brambati, B., and Adinolfi, M. Rapid detection of chromosome aneuploidies by quantitative fluorescence PCR: first application on 247 chorionic villus samples. J. Med. Genet. 36: 300–303, 1999.

    CAS  PubMed  Google Scholar 

  57. Mann, K., Fox, S. P., Abbs, S. J., et al. Development and implementation of a new rapid aneuploidy diagnostic service within the UK National Health Service and implications for the future of prenatal diagnosis. Lancet 358:1057–1061, 2001.

    Article  CAS  PubMed  Google Scholar 

  58. Hulten, M. A., Dhanjal, S., and Pertl, B. Rapid and simple prenatal diagnosis of common chromosome disorders: Advantages and disadvantages of the molecular methods FISH and QF-PCR. Reproduction 126:279–297, 2003.

    Article  CAS  PubMed  Google Scholar 

  59. Pertl, B., Pieber, D., Panzitt, T., et al. RhD genotyping by quantitative fluorescent polymerase chain reaction: a new approach. BJOG 107:1498–1502, 2000.

    Article  CAS  PubMed  Google Scholar 

  60. Mansfield, E. S., Robertson, J. M., Lebo, R. V., et al. Duchenne/Becker muscular dystrophy carrier detection using quantitative PCR and fluorescence-based strategies. Am. J. Med. Genet. 48:200–208, 1993.

    Article  CAS  PubMed  Google Scholar 

  61. Bougeard, G., Brugieres, L., Chompret, A., et al. Screening for TP53 rearrangements in families with the Li-Fraumeni syndrome reveals a complete deletion of the TP53 gene. Oncogene 22:840–846, 2003.

    Article  CAS  PubMed  Google Scholar 

  62. Delahunty, C. M., Ankener, W., Brainerd, S., Nickerson, D. A., and Mononen, I. T. Finnish-type aspartylglucosaminuria detected by oligonucleotide ligation assay. Clin. Chem. 41:59–61, 1995.

    CAS  PubMed  Google Scholar 

  63. Brinson, E. C., Adriano, T., Bloch, W., et al. Introduction to PCR/OLA/SCS, a multiplex DNA test, and its application to cystic fibrosis. Genet. Test. 1:61–68, 1997.

    CAS  PubMed  Google Scholar 

  64. Grossman, P. D., Bloch, W., Brinson, E., et al. High-density multiplex detection of nucleic acid sequences: oligonucleotide ligation assay and sequence-coded separation. Nucleic Acids Res. 22:4527–4534, 1994.

    Article  CAS  PubMed  Google Scholar 

  65. Heath, K. E., Day, I. N., and Humphries, S. E. Universal primer quantitative fluorescent multiplex (UPQFM) PCR: a method to detect major and minor rearrangements of the low density lipopro-tein receptor gene. J. Med. Genet. 37:272–280, 2000.

    Article  CAS  PubMed  Google Scholar 

  66. Schouten, J. P., McElgunn, C. J., Waaijer, R., Zwijnenburg, D., Diepvens, F., and Pals, G. Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucleic Acids Res. 30:e57, 2002.

    Article  PubMed  Google Scholar 

  67. Hogervorst, F. B., Nederlof, P. M., Gille, J. J., et al. Large genomic deletions and duplications in the BRCA1 gene identified by a novel quantitative method. Cancer Res. 63:1449–1453, 2003.

    CAS  PubMed  Google Scholar 

  68. Montagna, M., Palma, M. D., Menin, C., et al. Genomic rearrangements account for more than one-third of the BRCA1 mutations in northern Italian breast/ovarian cancer families. Hum. Mol. Genet. 12:1055–1061, 2003.

    Article  CAS  PubMed  Google Scholar 

  69. Nakagawa, H., Hampel, H., and de la Chapelle, A. Identification and characterization of genomic rearrangements of MSH2 and MLH1 in Lynch syndrome (HNPCC) by novel techniques. Hum. Mutat. 22:258, 2003.

    Article  PubMed  Google Scholar 

  70. Horowitz, M., Pasmanik-Chor, M., Borochowitz, Z., et al. Prevalence of glucocerebrosidase mutations in the Israeli Ashkenazi Jewish population. Hum. Mutat. 12:240–244, 1998. Erratum: Hum. Mutat. 13:255, 1999.

    Article  CAS  PubMed  Google Scholar 

  71. Karpati, M., Peleg, L., Gazit, E., Akstein, E., and Goldman, B. A novel mutation in the HEXA gene specific to Tay–Sachs disease carriers of Jewish Iraqi origin Clin. Genet. 57:398–400, 2000.

    Article  CAS  PubMed  Google Scholar 

  72. Drucker, L., Stackievitz, R., Shpitz, B., and Yarkoni, S. Incidence of BRCA1 and BRCA2 mutations in Ashkenazi colorectal cancer patients: preliminary study. Anticancer Res. 20:559–561, 2000.

    CAS  PubMed  Google Scholar 

  73. Jordan, N., Williams, N., Gregory, J. W., Evans, C., Owen, M., and Ludgate, M. The W546X mutation of the thyrotropin receptor gene: potential major contributor to thyroid dysfunction in a Caucasian population. J. Clin. Endocrinol. Metab. 88:1002–1005, 2003.

    Article  CAS  PubMed  Google Scholar 

  74. Matyas, G., Giunta, C., Steinmann, B., Hossle, J. P., and Hellwig, R. Quantification of single nucleotide polymorphisms: a novel method that combines primer extension assay and capillary electrophoresis. Hum. Mutat. 19:58–68, 2002.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Frayling, I.M., Monk, E., Butler, R. (2006). PCR-Based Methods for Mutation Detection. In: Coleman, W.B., Tsongalis, G.J. (eds) Molecular Diagnostics. Humana Press. https://doi.org/10.1385/1-59259-928-1:065

Download citation

  • DOI: https://doi.org/10.1385/1-59259-928-1:065

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-356-5

  • Online ISBN: 978-1-59259-928-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics