Skip to main content

Activity of the Germline-Specific Oct4-GFP Transgene in Normal and Clone Mouse Embryos

  • Protocol
Germ Cell Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 254))

Abstract

The first step in elucidating the function of a particular gene of interest involves defining its expression pattern. One way to do this is by using a reporter gene to tag the gene either in a construct (transgenesis) or in the genome (homologous recombination). Transgenes have been generated using different regions of the Oct4 gene promoter to drive expression of either lacZ or GFP, which allows the activity of the Oct4 promoter to be followed in living cells and tissues. The bacterial LacZ gene encodes the enzyme β-galactosidase, which cleaves the substrate X-gal (5-bromo-4-chloro-3-indolyl-β-d-galactoside) to produce a blue color reaction. The green fluorescent protein (GFP) from the jellyfish Aequorea victoria gives a natural green fluorescence that can be viewed under blue light excitation without processing the biological substrate for any chemical/enzymatic reaction. GFP is a convenient reporter for several reasons:

  • • It is detected in situ under noninvasive viable conditions (see see Note 1).

  • • GFP allows the separation of the tissue testing positive down to the single cell. It is sensitive enough for biological assays; variants with different half-life and stability extend its use in a variety of applications and follow-up observations.

  • • Fluorescence persists after fixation with methanol or paraformaldehyde/glutaral-dehyde.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hübner, K., et al., (2003) Derivation of oocytes from mouse embryonic stem cells. Science 300, 1251–1256.

    Article  PubMed  Google Scholar 

  2. Lawson, K. A. and Hage, W. J. Clonal analysis of the origin of primordial germ cells in the mouse, in Germline Development, Marsh, J. and Goode, J. eds., John Wiley and Sons: England, UK, 1994, pp. 68–84.

    Google Scholar 

  3. Tam, P. P. and Zhou, S. X. (1996) The allocation of epiblast cells to ectodermal and germ-line lineages is influenced by the position of the cells in the gastrulating mouse embryo. Dev. Biol. 178, 124–132.

    Article  PubMed  CAS  Google Scholar 

  4. Lawson, K. A., et al. (1999) Bmp4 is required for the generation of primordial germ cells in the mouse embryo. Genes Dev. 13, 424–436.

    Article  PubMed  CAS  Google Scholar 

  5. Ginsburg, M., Snow, M. H., and McLaren, A. (1990) Primordial germ cells in the mouse embryo during gastrulation. Development 110, 521–528.

    PubMed  CAS  Google Scholar 

  6. Beck, S. and Olek, A. The Epigenome: Molecular Hide and Seek. John Wiley and Sons, England, UK, 2002.

    Google Scholar 

  7. Yoshimizu, T., Obinata, M., and Matsui, Y. (2001) Stage-specific tissue and cell interactions play key roles in mouse germ cell specification. Development 128, 481–490.

    PubMed  CAS  Google Scholar 

  8. Hahnel, A. C., et al. (1990) Two alkaline phosphatase genes are expressed during early development in the mouse embryo. Development 110, 555–564.

    PubMed  CAS  Google Scholar 

  9. Chiquoine, A. D. and Rothenberg, E. J. (1954) A note on alkaline phosphatase activity of germ cells in amblystoma and chick embryos. Anat. Rec. 127, 31–35.

    Article  Google Scholar 

  10. Abe, K., et al. (1996) Purification of primordial germ cells from TNAPbeta-geo mouse embryos using FACS-gal. Dev. Biol. 180, 468–472.

    Article  PubMed  CAS  Google Scholar 

  11. Manova, K. and Bachvarova, R. F. (1991) Expression of c-kit encoded at the W locus of mice in developing embryonic germ cells and presumptive melanoblasts. Dev. Biol. 146, 312–324.

    Article  PubMed  CAS  Google Scholar 

  12. Buehr, M., Gu, S., and McLaren, A. (1993) Mesonephric contribution to testis differentiation in the fetal mouse. Development 117, 273–281.

    PubMed  CAS  Google Scholar 

  13. Solter, D. and Knowles, B. B. (1978) Monoclonal antibody defining a stage-specific mouse embryonic antigen (SSEA-1). Proc. Natl. Acad. Sci. USA 75, 5565–5569.

    Article  PubMed  CAS  Google Scholar 

  14. Donovan, P. J., et al. (1987) Studies on the migration of mouse germ cells. J. Cell Sci. 8(Suppl.), 359–367.

    CAS  Google Scholar 

  15. Fujiwara, Y., et al. (1994) Isolation of a DEAD-family protein gene that encodes a murine homolog of Drosophila vasa and its specific expression in germ cell lineage. Proc. Natl. Acad. Sci. USA 91, 12,258–12,262.

    Article  PubMed  CAS  Google Scholar 

  16. Enders, G. C. and May, 2nd, J. J. (1994) Developmentally regulated expression of a mouse germ cell nuclear antigen examined from embryonic day 11 to adult in male and female mice. Dev. Biol. 163, 331–340.

    Article  PubMed  CAS  Google Scholar 

  17. Schöler, H. R., et al. (1989) A family of octamer-specific proteins present during mouse embryogenesis: evidence for germline-specific expression of an Oct factor. EMBO J. 8, 2543–2550.

    PubMed  Google Scholar 

  18. Yeom, Y. I., et al. (1996) Germline regulatory element of Oct-4 specific for the totipotent cycle of embryonal cells. Development 122, 881–894.

    PubMed  CAS  Google Scholar 

  19. Yoshimizu, T., et al. (1999) Germline-specific expression of the Oct-4/green fluorescent protein (GFP) transgene in mice. Dev. Growth Differ. 41, 675–684.

    Article  PubMed  CAS  Google Scholar 

  20. Anderson, R., et al. (1999) Mouse primordial germ cells lacking beta1 integrins enter the germline but fail to migrate normally to the gonads. Development 126, 1655–1664.

    PubMed  CAS  Google Scholar 

  21. Anderson, R., et al. (2000) The onset of germ cell migration in the mouse embryo. Mech. Dev. 91(1–2), 61–68.

    Article  PubMed  CAS  Google Scholar 

  22. Schubart, D. B., et al. (1996) B-cell-specific coactivator OBF-1/OCA-B/Bob1 required for immune response and germinal centre formation. Nature 383, 538–542.

    Article  PubMed  CAS  Google Scholar 

  23. Wegner, M. (2001) Expression of transcription factors during oligodendroglial development. Microsc. Res. Tech. 52, 746–752.

    Article  PubMed  CAS  Google Scholar 

  24. Pesce, M., Gross, M. K., and Schöler, H. R. (1998) In line with our ancestors: Oct-4 and the mammalian germ. Bioessays 20, 722–732.

    Article  PubMed  CAS  Google Scholar 

  25. Tomilin, A., et al. (2000) Synergism with the coactivator OBF-1 (OCA-B, BOB-1) is mediated by a specific POU dimer configuration. Cell 103, 853–864.

    Article  PubMed  CAS  Google Scholar 

  26. Nordhoff, V., et al. (2001) Comparative analysis of human, bovine, and murine Oct-4 upstream promoter sequences. Mamm. Genome 12, 309–317.

    Article  PubMed  CAS  Google Scholar 

  27. Burgess, S., et al. (2002) The zebrafish spiel-ohne-grenzen (spg) gene encodes the POU domain protein Pou2 related to mammalian Oct4 and is essential for formation of the midbrain and hindbrain, and for pre-gastrula morphogenesis. Development 129, 905–916.

    PubMed  CAS  Google Scholar 

  28. Du, Z., Cong, H., and Yao, Z. (2001) Identification of putative downstream genes of Oct-4 by suppression-subtractive hybridization. Biochem. Biophys. Res. Commun. 282, 701–706.

    Article  PubMed  CAS  Google Scholar 

  29. Pesce, M., et al. (1998) Differential expression of the Oct-4 transcription factor during mouse germ cell differentiation. Mech.Dev. 71(1–2), 89–98.

    Article  PubMed  CAS  Google Scholar 

  30. Labosky, P. A., Barlow, D. P., and Hogan, B. L. (1994) Embryonic germ cell lines and their derivation from mouse primordial germ cells. Ciba Found Symp. 182, 157–68; discussion 168–178.

    PubMed  CAS  Google Scholar 

  31. Monk, M. and Holding, C. (2001) Human embryonic genes re-expressed in cancer cells. Oncogene 20, 8085–8091.

    Article  PubMed  CAS  Google Scholar 

  32. Niwa, H., Miyazaki, J., and Smith, A. G. (2000) Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat. Genet. 24, 372–376.

    Article  PubMed  CAS  Google Scholar 

  33. Fuhrmann, G., et al. (2001) Mouse germline restriction of Oct4 expression by germ cell nuclear factor. Dev. Cell. 1, 377–387.

    Article  PubMed  CAS  Google Scholar 

  34. Nichols, J., et al. (1998) Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95, 379–391.

    Article  PubMed  CAS  Google Scholar 

  35. Boiani, M., et al. (2002) Oct4 distribution and level in mouse clones: consequences for pluripotency. Genes Dev. 16, 1209–1219.

    Article  PubMed  CAS  Google Scholar 

  36. Szabo, P. E., et al. (2002) Allele-specific expression of imprinted genes in mouse migratory primordial germ cells. Mech. Dev. 115(1–2), 157–160.

    Article  PubMed  CAS  Google Scholar 

  37. Nolan, G. P., et al. (1988) Fluorescence-activated cell analysis and sorting of viable mammalian cells based on beta-d-galactosidase activity after transduction of Escherichia coli lacZ. Proc. Natl. Acad. Sci. USA 85, 2603–2607.

    Article  PubMed  CAS  Google Scholar 

  38. Fiering, S. N. et al. (1991) Improved FACS-Gal: flow cytometric analysis and sorting of viable eukaryotic cells expressing reporter gene constructs. Cytometry 12, 291–301.

    Article  PubMed  CAS  Google Scholar 

  39. Pepling, M. E. and Spradling, A. C. (2001) Mouse ovarian germ cell cysts undergo programmed breakdown to form primordial follicles. Dev. Biol. 234, 339–351.

    Article  PubMed  CAS  Google Scholar 

  40. Gertz, B. (1999) Primordial germ cell-specific GFP expression using a modified Oct4 promoter. bug Journal (online) 2, 63–66.

    Google Scholar 

  41. Palmieri, S. L., et al. (1994) Oct-4 transcription factor is differentially expressed in the mouse embryo during establishment of the first two extraembryonic cell lineages involved in implantation. Dev. Biol. 166, 259–267.

    Article  PubMed  CAS  Google Scholar 

  42. Lee, J., et al. (2002) Erasing genomic imprinting memory in mouse clone embryos produced from day 11.5 primordial germ cells. Development 129, 1807–1817.

    Article  PubMed  CAS  Google Scholar 

  43. Kang, Y. K., et al. (2001) Influence of oocyte nuclei on demethylation of donor genome in cloned bovine embryos. FEBS Lett. 499(1–2), 55–58.

    Article  PubMed  CAS  Google Scholar 

  44. Ertzeid, G. and Storeng, R. (2001) The impact of ovarian stimulation on implantation and fetal development in mice. Hum. Reprod. 16, 221–225.

    Article  PubMed  CAS  Google Scholar 

  45. Axelrod, H. R. (1984) Embryonic stem cell lines derived from blastocysts by a simplified technique. Dev. Biol. 101, 225–228.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc.

About this protocol

Cite this protocol

Boiani, M., Kehler, J., Schöler, H.R. (2004). Activity of the Germline-Specific Oct4-GFP Transgene in Normal and Clone Mouse Embryos. In: Schatten, H. (eds) Germ Cell Protocols. Methods in Molecular Biology™, vol 254. Humana Press. https://doi.org/10.1385/1-59259-741-6:001

Download citation

  • DOI: https://doi.org/10.1385/1-59259-741-6:001

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-257-5

  • Online ISBN: 978-1-59259-741-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics