Skip to main content

Synthesis of Coumarin-Based, Esterase-Sensitive Cyclic Prodrugs of Opioid Peptides with Enhanced Membrane Permeability and Enzymatic Stability

  • Protocol
Peptidomimetics Protocols

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 23))

  • 2931 Accesses

Abstract

With the discovery of an increasing number of biologically active peptides and peptide mimetics (13), there is a pressing need for the development of strategies to deliver these biologically active compounds to the desired site of action. The preceding two chapters have described two methods of making esterase-sensitive cyclic prodrugs of peptides. In this chapter, we wish to describe a third method of making esterase-sensitive cyclic prodrugs of peptides using DADLE, an opioid peptide (47), as an example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Reference

  1. Hruby, V. J. and Gehrig, C. A. (1989) Recent Development in the design of receptor specific opioid peptides. Med. Res. Rev. 9, 343–401.

    Article  CAS  Google Scholar 

  2. Schiller, P. W. (1991) Development of receptor-specific opioid peptide analogs. Prog. Med. Chem. 28, 301–340.

    Article  CAS  Google Scholar 

  3. Schiller, P. W. (1993) Development of receptor-selective opioid peptide analogs as pharmaceutical tools and as potential drugs. Handbook Exp. Pharmacol. 104, 681–710.

    Google Scholar 

  4. Bedded, C. R., Clark, R. B, Hardy, G. W., Lowe, L. A., Ubatuba, F. B., Vane, J. R., Wilkinson, S., Chang, K. J., Cuatrecasas, P., and Miller, R. J. (1977) Structural requirements for opioid activity of analogs of the enkephalins. Proc. R. Soc. London 198, 149–265.

    Google Scholar 

  5. Hughes, J., Smith, T. W., Kosterlitz, H. W., Fothergill, L. A., Morgan, B. A., and Morris, H. R. (1975) identification of two related pentapeptides from the brain with potent opiate agonist activity. Nature 577–579.

    Google Scholar 

  6. Ehrenpreis, S. and Sicuteri, F. (1983) Degradation of Endogenous Opioids. Raven, New York.

    Google Scholar 

  7. Schiller, P. W., Nguyen, T. M.-D., Maziak, L., and Lemieux, C. (1985) A novel cyclic opioid peptide analog showing high preference for receptors. Biochem. Biophys. Res. Comm. 127, 558–564.

    Article  CAS  Google Scholar 

  8. Hershfield, R. and Schmir, G. L. (1973) The lactonization of ring-substituted coumarinic acids. Structural effects on the partitioning of the tetrahedral intermediates in esterification. J. Am. Chem. Soc. 95, 7359–7368.

    Article  CAS  Google Scholar 

  9. Hershfield, R. and Schmir, G. L. (1973) Lactonization of coumarinic acids. Kinetic evidence for three species of the tetrahedral intermediate. J. Am. Chem. Soc. 95, 8032–8040.

    Article  CAS  Google Scholar 

  10. Wang, B., Zhang, H., and Wang, W. (1996) Chemical feasibility studies of a potential coumarin-based prodrug system. Bioorg. Med. Chem. Lett. 6, 945–950.

    Article  CAS  Google Scholar 

  11. Wattenberg, L. W., Lam, L. K. T., and Fladmoe, A. V. (1979) Inhibition of chemical carcinogen-induced neoplasia by coumarins and α-angelicalactone. Cancer Res. 39, 1651–1660.

    CAS  Google Scholar 

  12. Wang, B., Wang, W., Zhang, H., Shan, D., and Smith, T. D. (1996) Coumarin-based prodrugs 2. Synthesis and bioreversibility studies of an esterase-sensitive cyclic prodrug of DADLE, an opioid peptide. Bioorg. Med. Chem. Lett. 6, 2823–2826.

    Article  CAS  Google Scholar 

  13. Berkarda, B., Bouffard-Eyuboglu, H., and Dermand, U. (1983) The effect of coumarin derivatives on the immunological system of man. Agents Actions 13, 50–55.

    Article  CAS  Google Scholar 

  14. Thornes, R. D. (1983) Coumarins, Melanoma and Cellular Immunity. Protective Agents in Cancer, 43–56.

    Google Scholar 

  15. Marshall, M. E., Mendelsohn, L., Butler, K., Cantrell, J., Harvey, J., and Macdonald, J. S. (1987) Treatment of non-small cell lung cancer with coumarin and cimetidine. Cancer Treat. Rep. 71, 91–92.

    CAS  Google Scholar 

  16. Marshall, M. E., Mendelsohn, L., Butler, K., Riley, L., Cantrell, J., Wiseman, C, Taylor, R., and Macdonald, J. S. (1987) Treatment of metastatic renal cell carcinoma with coumarin and cimetidine: a pilot study. J. Clin. Oncol. 5, 862–866.

    CAS  Google Scholar 

  17. Marshall, M. E., Butler, K., Cantrell, J., Wiseman, C, and Macdonald, J. S. (1989) Treatment of advanced malignant melanoma with coumarin and cimetidine: a pilot study. Cancer Chemother. Pharmacol. 24, 65–66.

    Article  CAS  Google Scholar 

  18. Marshall, M. E., Conley, D., Hollingsworth, P., Brown, S., and Thompson, J. S. (1989) Effects of coumarin on lymphocyte, natural killer cell, and monocyte function in vitro. J. Biol. Response Mod. 8, 70–85.

    CAS  Google Scholar 

  19. Nair, R. V., Fisher, E. P., Safe, S. H., Cortez, C, Harvey, R. G., and DiGiovanni, J. (1991) Novel coumarins as potential anticarcinogenic agents. Carcinogenesis 12, 65–69.

    Article  CAS  Google Scholar 

  20. National Toxicology Program (1993) Toxicology and Carcinogenesis Studies of Coumarin, U. S. Department of Health and Human Services: Public Health Service and National Institutes of Health, Bethesda, MD.

    Google Scholar 

  21. Tseng, A. (1991) Chemoprevention of tumors in MTV-U-ras transgenic mice with coumarin. Am. Assoc. Cancer Res. Proc. 32, Abstract No. 2257.

    Google Scholar 

  22. Stewart, J. M. and Young, J. D. (1984) Solid Phase Peptide Synthesis. Pierce, Rockford, IL.

    Google Scholar 

  23. Dalcannale, E. and Montanari, F. (1986) Selective oxidation of aldehydes to carboxylic acid with sodium chlorite-hydrogen peroxide. J. Org. Chem. 52, 567–569.

    Article  Google Scholar 

  24. Bryan, D. B. (1977) Nuclear analogues of β-lactam antibiotics. 2. The total synthesis of 8-oxo-4-thia—1-azabicyclio[4. 2. 0.]oct-2-ene-2-carboxylic acid. J. Am. Chem. Soc. 99, 2353–2355.

    Article  CAS  Google Scholar 

  25. Lundt, B. F. (1978) Removal of tert-butoxylcarbonyl protecting groups with trifluoroacetic acid. Int. J. Peptide Protein Res. 12, 258–268.

    Article  CAS  Google Scholar 

  26. Bodanszky, M. and Bodanszky, A. (1984) The Practice of Peptide Synthesis. Springer-Velag, New York.

    Google Scholar 

  27. Diago-Meseguer, J., Palomo-Coll, A. L., Fernandez-Lizarbe, J. R., and Zugaza-Bilbao, A. (1980) A new reagent for activating carboxyl groups: preparation and reactions of N,N-bis[2-oxo-3-oxazolidinyl]phosphoro diamidic chloride. Synthesis, 547–551.

    Google Scholar 

  28. Hidalgo, I. J., Raub, T. J., and Borchardt, R. T. (1989) Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology 96, 736–749.

    CAS  Google Scholar 

  29. Wilson, G., Hassan, I. F., Dix, C. J., Williamson, I., Shah, R., and Mackay, M. (1990) Transport and permeability properties of human Caco-2 cells: an in vitro model of the intestinal epithelial cell barrier. J. Control. Release 11, 25–40.

    Article  CAS  Google Scholar 

  30. Pinto, M., Robine-Leon, S., Appay, M.-D., Kedinger, M., Tradou, N., Dussaulx, E., Lacroix, B., Simon-Assmann, P., Haffen, K., Fogh, J., and Zweibaum, A. (1983) Entrocyte-like differentiation and polarization of the human colon carcinoma cell line Caco-2 in culture. Biol. Cell 47, 323–330.

    Google Scholar 

  31. Artursson, P. (1990) Epithelial transport of the drugs in cell culture. I: a model for studying the passive diffusion of intestinal absorptive (Caco-2) cell. J. Pharm. Sci. 79, 476–482.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Wang, B., Shan, D., Wang, W., Zhang, H., Gudmundsson, O., Borchardt, R.T. (1999). Synthesis of Coumarin-Based, Esterase-Sensitive Cyclic Prodrugs of Opioid Peptides with Enhanced Membrane Permeability and Enzymatic Stability. In: Kazmierski, W.M. (eds) Peptidomimetics Protocols. Methods in Molecular Medicine™, vol 23. Humana Press. https://doi.org/10.1385/0-89603-517-4:71

Download citation

  • DOI: https://doi.org/10.1385/0-89603-517-4:71

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-517-1

  • Online ISBN: 978-1-59259-605-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics