Skip to main content

Synthesis of α-Vinyl Amino Acids

  • Protocol
Peptidomimetics Protocols

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 23))

  • 2974 Accesses

Abstract

This chapter presents procedures for the synthesis of α-vinyl amino acids, in which the usual α-proton is replaced by an unsubstituted vinyl group (Fig. 1). The parent member of this family, α-vinylglycine (R≠H), is a natural product (1,2) and acts as a suicide substrate for a number of PLP-dependent enzymes (49). Higher members of this family (R≠H) have also been synthesized (1012). Several including α-vinyl-m-tyrosine (1315), α-vinyl-DOPA (1315), α-vinylglutamate (16), α-vinylornithine (17), α-vinyllysine (18), and α-vinylarginine (18) are Trojan horse inhibitors of their cognate amino acid decarboxylases (AADCs). Such (appropriately labeled) AADC inhibitors may also have potential as reagents for positron emission tomography (19).

Generic structure for α-vinyl amino acids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dardenne, G., Casimir, J., Marlier, M., Larsen, P. O. (1974) Acide (2R)-amino-3-butenoique (binylglycine) dans les carpophores de Rhodophyllus nidorosus. Phytochemistry 13, 1897–1900.

    Article  CAS  Google Scholar 

  2. For syntheses of (±)-α-vinylglycine and derivatives see: (α) a-(2-bromo)vinylglycine: Petasis, N. A. and Zavialov, I. A. (1997) A new and practical synthesis of α-amino acids from alkenyl boronic acids. J. Am. Chem. Soc. 119, 445–446; (b) Fitzner, J. F., Pratt, D. V., and Hopkins, P. B. (1985) Synthesis of protected racemic α,γ-unsaturated-α-amino acids via γ-phenylseleno-α,β-unsaturated esters. Tetrahedron Lett. 26, 1959–1962; (c) Vyas, D. M., Chiang, Y., and Doyle, T. W. (1984) A practical synthesis of vinylglycine from (Z)-2-butene-1,4-diol. J. Org. Chem. 49, 2037; (d) Greenlee, W. J. (1984) Synthesis of α,γ-unsaturated amino acids by the Strecker reaction. J. Org. Chem. 49, 2632–2634; (e) Hudrlik, P. F. and Kulkarni, A. S. (1981) J. Am. Chem. Soc. α-Silyl aldehydes: preparation and use as stereoselective vinyl cation equivalents. 103, 6251–6253; (f) Baldwin, J. E., Haber, S. B., Hoskins,C, and Kruse, L. I. (1977) Synthesis of β,γ-unsaturatedamino acids. J. Org. Chem. 42, 1239–1241; (g) Friis, P., Helboe, P., and Larsen, P. O. (1974) Synthesis and resolution of vinylglycine, a β,γ-unsaturated amino acid. Acta Chem. Scand., Ser. B 28, 317–321. butene-1,4-diol. J. Org. Chem. 49, 2037; (d) Greenlee, W. J. (1984) Synthesis of β,γ-unsaturated amino acids by the Strecker reaction. J. Org. Chem. 49, 2632–2634; (e) Hudrlik, P. F. and Kulkarni, A. S. (1981) J. Am. Chem. Soc. α-Silyl aldehydes: preparation and use as stereoselective vinyl cation equivalents. 103, 6251–6253; (f) Baldwin, J. E., Haber, S. B., Hoskins,C, and Kruse, L. I. (1977) Synthesis of β,γ-unsaturatedamino acids. J. Org. Chem. 42, 1239–1241; (g) Friis, P., Helboe, P., and Larsen, P. O. (1974) Synthesis and resolution of vinylglycine, a β,γ-unsaturated amino acid. Acta Chem. Scand., Ser. B 28, 317–321.

    Article  CAS  Google Scholar 

  3. For enantioselective syntheses of α-vinylglycine or derivatives, see: (a) Larksarp, C. and Alper, H. (1997) Palladium(0)-catalyzed asymmetric cycloaddition of vinyloxiranes with heterocumulenes using chiral phosphine ligands: an effective route to vinyloxazolidine derivatives. J. Am. Chem. Soc. 119, 3709–3715; (b) Berkowitz, D. B. and Smith, M. K. (1996) A convenient synthesis of l-vinylglycine from l-homoserine lactone. Synthesis 39–41; (c) Trost, B. M. and Bunt, R. C. (1996) On ligand design for catalytic outer sphere reactions: a simple asymmetric synthesis of vinylglycinol. Angew. Chem. Int. Ed. Engl. 35, 99–102; (d) Griesback, A. G. and Hirt, J. (1995) A photochemical route to vinylglycine and a vinylglycine dipeptide. Liebigs Ann. 1957–1961; (e) Carrasco, M., Jones, R. J., Kamel, S., Rapoport, H., and Truong, T. (1991) N-(benzyloxycarbonyl)-l-vinylglycine methyl ester Org. Syn. 70, 29–34; (f) Krol, W. J., Mao, S.-S., Steele, D. L., and Townsend, C. A. (1991) Stereochemical correlation of proclavamic acid and syntheses of erythro and threo-l-β-hydroxyornithine from an improved vinylglycine synthon. J. Org. Chem. 56, 728–731; (g) Pellicciari, R., Natalini, B., and Marinozzi, M. (1988) l-Vinylglycine from l-homoserine. Synthetic Commun. 18, 1715–1721; (h) Moriwake, T., Hamano, S.-L, Saito, S., and Torii, S. (1987) A straightforward synthesis of allyl amines from α-amino acids without racemization. Chem. Lett. 2085–2088; (i) Barton, D. H. R., Crich, D., Herve, Y., Potier, P., and Thiery, J. (1985) The free radical chemistry of carboxylic esters of 2-selenopyridine-N-oxide: a convenient synthesis of l-vinylglycine. Tetrahedron 41, 4347–4357; (j) Hanessian, S. and Sahoo, S. P. (1984) A novel and efficient synthesis of l-vinylglycine. Tetrahedron Lett. 25, 1425–1428; (k) Schöllkopf, U., Nozulak, J., and Groth, U. (1984) Asymmetric syntheses via heterocyclic intermediates-XXII. Enantioselective synthesis of α-alkenylglycine methyl esters and α-alkenylglycines. Tetrahedron 40, 1409–1417.

    Article  CAS  Google Scholar 

  4. Cho, C, Ishii, R., Hyeon, S., and Suzuki, A. (1987) Inhibition of serine:glyoxylate aminotransferase and mitochondrial glycine oxidation in the photorespiratory glycolate pathway by vinylglycine. Agric. Biol. Chem. 51, 2597–2598.

    CAS  Google Scholar 

  5. Cornell, N. W., Zuurendonk, P. F., Kerich, M. J., and Straight, C. B. (1984) Selective inhbition of alanine aminotransferase and aspartate aminotransferase in rat hepatocytes. Biochem. J. 220, 707–716.

    CAS  Google Scholar 

  6. Griffith, O. W. (1983) Cysteinesulfinate metabolism. J. Biol. Chem. 258, 1591–1598.

    CAS  Google Scholar 

  7. Soper, T. S., Manning, J. M., Marcotte, P. A., and Walsh, C. T. (1977) Inactivation of bacterial d-amino acid transaminases by the olefinic amino acid d-vinylglycine. J. Biol. Chem. 252, 1571–1575.

    CAS  Google Scholar 

  8. Rando, R. R., Relyea, N., and Cheng, L. (1976) Mechanism of the irreversible inhibition of aspartate aminotransferase by the bacterial toxin l-2-amino-4-methoxy-trans-3-butenoic acid. J. Biol. Chem. 251, 3306–3312.

    CAS  Google Scholar 

  9. Rando, R. R. (1974) Irreversible inhibition of aspartate aminotransferase by 2-amino-3-butenoic acid. Biochemistry 13, 3859–3863.

    Article  CAS  Google Scholar 

  10. For synthetic approaches to higher α-vinyl amino acids, in racemic form, see: (a) Pedersen, M. L. and Berkowitz, D. B. (1993) Formal α-vinylation of amino acids, use of a new benzeneselenolate equivalent. J. Org. Chem. 58, 6966–6975; (b) Castelhano, A. L., Home, S., Taylor, G. J., Billedeau, R., and Krantz, A. (1988) Synthesis of α-amino acids with β,γ-unsaturated side chains. Tetrahedron 44, 5451–5466; (b) Münster, P. and Steglich, W. (1987) Synthesis of α-amino acids by reaction of t-butyl N-(t-butoxycarbonyl)iminoacetate with C-nucleophiles. Synthesis 223–225; (c) Castelhano, A. L., Home, S., Billedeau, R., and Krantz, A. (1986) Reactions of an electrophilic glycine cation equivalent with Grignard reagents. A simple synthesis of β,γ-unsaturated amino acids. Tetrahedron Lett. 27, 2435–2438; (d) Sawada, S., Nakayama, T., Esaki, N., Tanaka, H., Soda, K., and Hill, R. K. (1986) Synthesis of labeled (±)-2-amino-3-butenoic acids. J. Org. Chem. 51, 3384–3386; (e) Steglich, W. and Wegmann, H. (1980) Überführung von α-aminosäuren in α-vinylaminosäuren. Synthesis 481–483; (f) Metcalf, B. W. and Bonilavri, E. (1978) Phenyl trans-2-chlorovinyl sulphone, a vinyl cation equivalent. J. Chem. Soc. Chem. Commun. 914–915; (g) Greenlee, W. J., Taub, D., and Patchett, A. A. (1978) A general synthesis of α-vinyl-α-amino acids. Tetrahedron Lett. 3999–4002; (h) Metcalf, B. W. and Jund, K. (1977) Synthesis of β,γ-unsaturated amino acids as potential catalytic irreversible enzyme inhibitors. Tetrahedron Lett. 3689–3692; (i) Taub, D. and Patchett, A. A. Syntheses of α-ethynyl-3,4-dihydroxyphenylalanine and α-viny 1-3,4-dihydroxyphenylalanine. (1977) Tetrahendron Lett. 2745–2748.

    Article  CAS  Google Scholar 

  11. For syntheses of higher α-vinyl amino acids (α-vinylalanine, α-vinylbutyrine and α-vinylphenylalanine) in optically enriched form, see: (a) Colson, P.-J. and Hegedus, L. S. (1993) Asymmetric synthesis of α-alkyl-α-amino acids from a chromium-carbene-complex-derived β-lactams. J. Org. Chem. 58, 5918–5924; (b) Seebach, D., Bürger, H. M., and Schickli, C. P. (1991) Stereoselektive umsetzungen von rac-, oder (R)-oder (S)-5-alkyliden-2-t-butyl-3-methyl-4-oxo-1-imidazolidincarbonsaure-t-butylestern (chirale 2,3-dehydroaminosäure derivate) und herstellung einiger nichtproteinogener aminosäuren. Liebigs Ann. Chim. 669–684; (c) Weber, T., Aeschimann, R., Maetzke, T., and Seebach, D. (1986) Methionin als vorläufer zur enantioselectiven synthese α-verzweigter vinylglycine und anderer aminosäuren. Helv. Chim. Acta. 69, 1365–1377.

    Article  CAS  Google Scholar 

  12. For formal enzymatic resolution of α-vinyl amino acids, see: Berkowitz, D. B., Pumphrey, J. A., and Shen, Q. (1994) Enantiomerically enriched α-vinyl amino acids via lipase-mediated “reverse transesterification”. Tetrahedron Lett. 35, 8743–8746.

    Article  CAS  Google Scholar 

  13. Maycock, A. L., Aster, S. D., and Patchett, A. A. (1979) Suicide inactivation of decarboxylases. Dev. Biochem. 6, 115–129.

    CAS  Google Scholar 

  14. Ribereau-Gayon, G., Danzin, C, Palfreyman, M. G., Aubry, M., Wagner, J., Metcalf, B. W., et al. (1979) In vitro and in vivo effects of α-acetylenic DOPA and α-vinyl DOPA on aromatic l-amino acid decarboxylase. Biochem. Pharm. 28, 1331–1335.

    Article  CAS  Google Scholar 

  15. Maycock, A. L., Aster, S. D., and Patchett, A. A. (1978) Studies with inhibitors of aromatic amino acid decarboxylase, in Enzyme-Activated Irreversible Inhibitors (Seiler, N., Jung, M. J., and Koch-Weser, J., eds.), Elsevier, North Holland, 211–220.

    Google Scholar 

  16. Metcalf, B. and Jung, M. (1979) α-Vinyl derivatives of α-amino acids. US Patent 4,147,873, April 3.

    Google Scholar 

  17. Danzin, C., Casara, P., Claverie, N., and Metcalf, B. W. (1981) α-Ethynyl and α-Vinyl Analogues of Ornithine as Enzyme-Activated Inhibitors of Mammalian Ornithine Decarboxylase. J. Med. Chem. 24, 16–20.

    Article  CAS  Google Scholar 

  18. Berkowitz, D. B., Jahng, W.-J., and Pedersen, M. L. (1996) α-Vinyllysine and α-vinylarginine are time-dependent inhibitors of their cognate decarboxylases. Bioorg. Med. Chem. Lett. 6, 2151–2156.

    Article  CAS  Google Scholar 

  19. Damhaut, P., Lemaire, C, Plenevaux, A., Brihaye, C, Christiaens, L., and Comar, D. (1997) No-carrier-added asymmetric synthesis of α-methyl-α-amino acids labelled with fluorine-18. Tetrahedron 53, 5785–5796.

    Article  CAS  Google Scholar 

  20. Yokum, T. S., Gauthier, T. J., Hammer, R. P., and McLaughlin, M. L. (1997) Solvent effects on the 310-α-helix equilibrium in short amphipathic peptides rich in α,α-disubstituted amino acids. J. Am. Chem. Soc. 119, 1167–1168.

    Article  CAS  Google Scholar 

  21. Altmann, E., Nebel, K., and Mutter, M. (1991) Conformational studies on peptides containing enantiomeric α-methyl α-amino acids. Helv. Chim. Acta 74, 800–806.

    Article  CAS  Google Scholar 

  22. Khosla, A., Stachowiak, K., Smeby, R. R., Bumpus, F. M., Piriou, F., Lintner, K., et al. (1981) Synthesis of [α-methyltyrosine-4]angiotensin II. Proc. Natl. Acad. Sci. USA 78, 757–760.

    Article  CAS  Google Scholar 

  23. Zabriskie, T. M., Cheng, H., and Vederas, J. C. (1992) Mechanism-based inactivation of peptidylglycine α-hydroxylating monoxygenase (PHM) by a substrate analogue, d-phenylalanyl-l-phenylalanyl-d-vinylglycine. J. Am. Chem. Soc. 114, 2270–2272.

    Article  CAS  Google Scholar 

  24. Pedersen, M. L. and Berkowitz, D. B. (1992) A reagent for the efficient cleavage of N-benzoylhomoserine lactones: access to α-(2-phenylseleno)ethyl amino acids. Tetrahedron Lett. 33, 7315–7318.

    Article  CAS  Google Scholar 

  25. ďAngelo, J. and Maddaluno, J. (1986) Enantioselective synthesis of β-amino esters through high-pressure-induced addition of amines to α,β-ethylenic esters. J. Am. Chem. Soc. 108, 8112–8114.

    Article  Google Scholar 

  26. Gassman, P. G. and Schenk, W. N. (1977) A general procedure for the base-promoted hydrolysis of hindered esters at ambient temperatures. J. Org. Chem. 42, 918–920.

    Article  CAS  Google Scholar 

  27. For the preparation of N-Bz-Phe-OMe, see: Schnyder, J. and Rothenberg, M. (1975) Hydrazide as a carboxyl protecting group. Deprotection by acidolysis. Helv. Chim. Acta 58, 521–523.

    Article  CAS  Google Scholar 

  28. Winkle, M. R., Lansinger, J. M., and Ronald, R. C. (1980) 2,5-Dimethoxy-benzyl alcohol: a convenient self-indicating standard for the determination of organolithium reagents. J. C. S. Chem. Commun. 87–88.

    Google Scholar 

  29. For the preparation of N-Bz-His-OMe: Campbell, J. B. (1983) The synthesis of N-t-(2-hydroxypropyl)histidine, N-t-(2-hydroxyethyl)histidine and their deuterated analogues. J. Chem. Soc. Perkin I, 1213–1217.

    Article  Google Scholar 

  30. Miller, J. B. (1959) Preparation of crystalline diphenyldiazomethane. J. Org. Chem. 24, 560–561.

    Article  CAS  Google Scholar 

  31. To avoid the use of HgO, see: Holton, T. L. and Shechter, H. (1995) Advantageous syntheses of diazo compounds by oxidation of hydrazones with lead tetraacetate in basic environments. J. Org. Chem. 60, 4725–4729.

    Article  CAS  Google Scholar 

  32. Lagarias, J. C, Glazer, A. N., and Rapoport, H. (1979) Chromopeptides for C-phycocyanin. J. Am. Chem. Soc. 101, 5030–5037.

    Article  CAS  Google Scholar 

  33. Dale, J. A., Dull, D. L., and Mosher, H. S. (1969) α-Methoxy-α-trifluoro-methylphenylacetic acid, a versatile reagent for the determination of enantiomeric composition of alcohols and amines. J. Org. Chem. 34, 2543–2549.

    Article  CAS  Google Scholar 

  34. Berkowitz, D. B. and Smith, M. K. (1995) Enantiomerically enriched α-methyl amino acids. Use of an acyclic, chiral alanine-derived dianion with a high diastereofacial bias. J. Org. Chem. 60, 1233–1238.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Berkowitz, D.B., McFadden, J.M., Smith, M.K., Pedersen, M.L. (1999). Synthesis of α-Vinyl Amino Acids. In: Kazmierski, W.M. (eds) Peptidomimetics Protocols. Methods in Molecular Medicine™, vol 23. Humana Press. https://doi.org/10.1385/0-89603-517-4:467

Download citation

  • DOI: https://doi.org/10.1385/0-89603-517-4:467

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-517-1

  • Online ISBN: 978-1-59259-605-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics