Skip to main content

Cyclic Aromatic Amino Acids with Constrained χ1 and χ2 Dihedral Angles

  • Protocol
Peptidomimetics Protocols

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 23))

Abstract

The concept of topographic design of peptide neurotransmitters and hormones was pioneered by Hruby (1,2). When the design involved primarily constraint of the side chains of a peptide that has a well-defined backbone conformation, the term “topographic design on a stable template” was proposed (3). The side chain χ1 of aromatic amino acids, such as Phe, Trp, Tyr, and His, can be constrained in either the gauche (−) or gauche (+) conformation by linking the nitrogen atom to the aromatic ring through a methylene bridge (Fig. 1).

Principle of side-chain constraint for Phe, Trp, and His.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kazmierski, W. and Hruby, V. J. (1988) A new approach to receptor ligand design: synthesis and conformation of a new class of potent and highly selective µ opioid antagonists utilizing tetrahydroisoquiniline carboxylic acid. Tetrahedron 44(3), 697–710.

    Article  CAS  Google Scholar 

  2. Hruby, V. J., Al-Obeidi, F., and Kazmierski, W. (1990) Emerging approaches in the molecular design of receptor-selective peptide ligands: conformational, topographical and dynamic considerations. Biochem. J. 268, 249–262.

    CAS  Google Scholar 

  3. Kazmierski, W. M., Yamamura, H. I., and Hruby, V. J. (1991) Topographic design of peptide neurotransmitters and hormones on stable backbone templates: Relation of conformation and dynamics to bioactivity. J. Am. Chem. Soc. 113, 2275–2283.

    Article  CAS  Google Scholar 

  4. Lovas, S. and Murphy, R. F. (1994) Solvated structure analysis of a conformationally restricted analogue of phenylalanine in a dipeptide model by the AM1-SM2 method. J. Mol. Struct. (Theochem.) 311, 297–304.

    Article  Google Scholar 

  5. Valle, G., Kazmierski, W. M., Crisma, M., Bonora, G. M., Toniolo, C., and Hruby, V. J. (1992) Constrained phenylalanine analogues. Preferred conformation of the 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid (Tic) residue. Int. J. Peptide Protein Res. 40, 222–232.

    Article  CAS  Google Scholar 

  6. Kazmierski, W., Wire, W. S., Lui, G. K., Knapp, R. J, Shook, J. E., Burks, T. F., et al. (1988) Design and synthesis of somatostatin analogues with topographical properties that lead to highly potent and specific µ opioid receptor antagonists with greatly reduced biding at somatostatin receptors. J. Med. Chem. 31(11), 2170–2177.

    Article  CAS  Google Scholar 

  7. Kyle, D. J., Martin, J. A., Farmer, S. G., and Burch, R. M. (1991) Design and conformational analysis of several highly potent bradykinin receptor antagonists. J. Med. Chem. 34(3), 1230–1233.

    Article  CAS  Google Scholar 

  8. Klutchko, S., Blankley, C. J., Fleming, R. W., Kikley, J. M., Werner, A. E., Nordin, I., et al. (1986) Synthesis of novel angiotensin converting enzyme inhibitor quinapril and related compounds. A divergence of structure-activity relationships for non-sulfhydryl and sulfhydryl types. J. Med. Chem. 29(10), 1953–1961.

    Article  CAS  Google Scholar 

  9. Steinbaugh, B. A., Hamilton, H. W., Patt, W. C., Rapundalo, S. T., Batley, B. L., Lunney, E. A., et al. (1994) Tetrahydroisoquinoline as a phenylalanine replacement in renin inhibitors. Bioorg. Med. Chem. Lett. 4(16), 2029–2034.

    Article  Google Scholar 

  10. Schiller, P. W., Nguyen, T. M.-D., Weltrowska, G., Wilkes, B. C., Marsden, B. J., Lemieux, C, et al. (1992), Differential stereochemical requirements of µ vs δ opioid receptors for ligand binding and signal transduction: Development of a class of potent and highly δ-selective peptide antagonists. Proc. Natl. Acad. Sci. USA 89, 11871–11875.

    Article  CAS  Google Scholar 

  11. Tancredi, T., Salvadori, S., Amodeo, P., Picone, D., Lazarus, L. H., Bryant, S. D., et al. (1994) Conversion of enkephalin and dermorphin into δ-selective opioid antagonists by single-residue substitution. Eur. J. Biochem. 224, 241–247

    Article  CAS  Google Scholar 

  12. Hunt, J. T., Lee, V. G., Leftheris, K., Seizinger, B., Carboni, J., Mabus, J., et al. (1996) Potent, cell active, non-thiol tetrapeptide inhibitors of farnesyltransferase. J. Med. Chem. 39(2), 353–358.

    Article  CAS  Google Scholar 

  13. Meek, T. D. (1992) Inhibitors of HIV-1 protease. J. Enzyme Inhibition 6, 65–98.

    Article  CAS  Google Scholar 

  14. Cai, R.-Z., Radulovic, S., Pinski, J., Nagy, A., Redding, T. W., Olsen, D. B., et al. (1992), Pseudononapeptide bombesin antagonists containing C-terminal Tip of Tpi. Peptides 13, 267–271.

    Article  CAS  Google Scholar 

  15. Radulovic, S., Cai, R-Z., Serfozo, P., Groot, K., Redding, T. W., Pinski, J., et al. (1991) Biological effects and receptor binding affinities of new pseudononapeptide bombesin/GRP receptor antagonists with N-terminal d-Trp of d-Tpi. Int. J. Peptide Protein Res. 38, 593–600.

    Article  CAS  Google Scholar 

  16. Coy, D. H., Neya, M., Jiang, N-Y., Mrozinski, J. E., Mantey, S. A., and Jensen, R. T. (1994) Conformational scan of bombesin/GRP reveals new position 11 receptor antagonists, in Peptides, Chemistry, Stucture and Biology (Hodges, R. S. and Smith, J. A., eds.), ESCOM, Leiden, The Netherlands, pp. 601–603.

    Google Scholar 

  17. Zechel, C., Trivedi, D., and Hruby, V. J. (1991) Synthetic glucagon antagonists and partial agonists. Int. J. Pept. Protein Res. 38, 131–138.

    Article  CAS  Google Scholar 

  18. VanAtten, M. K., Ensinger, C. L., Chiu, A. T., McCall, D. E., Nguyen, T. T., Wexler, R. R., et al. (1993) A novel series of selective, non-peptide inhibitors of angiotensin II binding to the AT2 site. J. Med. Chem. 36, 3985–3991.

    Article  Google Scholar 

  19. Wexler, R. R., Greenlee, W. J., Irvin, J. D., Goldberg, M. R., Prendergast, K., Smith, R. D., et al. (1996) Nonpeptide angiotensin II receptor antagonists: the next generation in antihypertensive therapy. J. Med. Chem. 39, 625–656.

    Article  CAS  Google Scholar 

  20. Pictet, A. and Spengler, T. (1911) The formation of isoquinoline derivatives through reaction of formaldehyde with phenylalanine and tyrosine. Chemische Berichte 44, 2030–2036.

    CAS  Google Scholar 

  21. Schiller, P. W., Weltrowska, G., Nguyen, T. M-D., Lemieux, C., Chung, N. N., Marsden, B. J., et al. (1991) Conformational restriction of the phenylalanine residue in a cyclic opioid peptide analogue: Effects on receptor selectivity and stereospecificity. J. Med. Chem. 34, 3125–3132.

    Article  CAS  Google Scholar 

  22. Archer, S. (1951) A revised preparation of clemo’s tetrahydrobenzo-quinolizinone. J. Org. Chem. 16, 430–432.

    Article  CAS  Google Scholar 

  23. Hayashi, K., Ozaki, Y., Nunami, K., and Yoneda, N. (1983) Facile preparation of optically pure (3S)-and (3R)-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid. Chem. Pharm. Bull. 31(1), 312–314.

    CAS  Google Scholar 

  24. Shiraiwa, T., Furukawa, T., Tsuchida, T., Sakata, S., Sunami, M., and Kurokawa, H. (1991) Asymmetric transformation of (R,S)-l,2,3,4-tetrahydro-3-isoquino-linecarboxylic acid via salt formation with (1S)-10-camphorsulfonic acid. Bull. Chem. Soc. Jpn. 64(12), 3729–3731.

    Article  CAS  Google Scholar 

  25. Kammermeier, B. O. T., Lerch, U., and Sommer, Chr. (1992) Efficient synthesis of racemic and enantiomerically pure l,2,3,4-tetrahydroisoquinoline-3-carboxylic acid and esters. Synthesis 1157–1160.

    Google Scholar 

  26. Péter, A., Tóth, G., and Tourwé, D. (1994) Monitoring of optical isomers of some conformationally constrained amino acids with tetrahydroisoquinoline or tetraline ring structures. J. Chrom, A 668, 331–335.

    Article  Google Scholar 

  27. Pèter, A., Török, G., Toth, G., Van Den Nest, W., Laus, G., and Tourwé, D. (1998) Chromatographic methods for the separation of unusual amino acids. J. Chrom. A 797, 765–776.

    Article  Google Scholar 

  28. Shinkai, H., Toi, H., Kumashiro, I., Seto, Y., Fukuma, M., Dan, K., et al. (1988) N-Acylphenylalanines and related compounds. A new class of oral hypoglycemic agents. J. Med. Chem. 31(11) 2092–2097.

    Article  CAS  Google Scholar 

  29. Lebl, M., Toth, G., Slavinova, J., and Hruby, V. J. (1992) Conformationally biased analogs of oxytocin. Int. J. Pept. Protein Res. 40, 148–151.

    Article  CAS  Google Scholar 

  30. Kataoka, Y., Seto, Y., Yamamoto, M., Yamada, T., Kuwata, S., and Watanabe, H. (1976) Studies of unusual amino acids and their peptides. VI. The syntheses and the optical resolutions of β-methylphenylalanine and its dipeptide present in bottromycin. Bull. Chem. Soc. Jpn. 49(4), 1081–1084.

    Article  CAS  Google Scholar 

  31. Péter, A., Tóth, G., Torok, G., and Tourwé, D. (1996) Separation of enantiomeric β-methyl amino acids and of β-methyl amino acid containing peptides. J. Chromatogr. A 728, 455–465.

    Article  Google Scholar 

  32. Péter, A., Laus, G., Tourwé, D., Gerlo, E., and Van Binst, G. (1993) An evaluation of microwave heating for the rapid hydrolysis of peptide samples for chiral amino acid analysis. Pept. Res. 6(1), 48–52.

    Google Scholar 

  33. Marfey, P. (1984) Determination of d-amino acids. II. Use of a bifunctional reagent, l,5-difluoro-2,4-dinitrobenzene. Carlsberg Res. Commun. 49, 591–596.

    Article  CAS  Google Scholar 

  34. Kazmierski, W. M., Urbanczyk-Lipkowska, Z., and Hruby, V. J. (1994) New amino acids for the topographical control of peptide conformation: synthesis of all the isomers of α,β-dimefhylphenylalanine and a,β-dimethyl-l,2,3,4-tetrahydroisoquinoline-3-carboxylic acid of high optical purity. J. Org. Chem. 59(7), 1789–1795.

    Article  CAS  Google Scholar 

  35. Ornstein, P. L., Arnold, M. B., Augenstein, N. K., and Paschal, J. W. (1991) Syntheses of 6-oxodecahydroisoquinoline-3-carboxylates. Useful intermediates for the preparation of conformationally defined excitatory amino acid antagonists. J. Org. Chem. 56(14), 4388–4392.

    Article  CAS  Google Scholar 

  36. Vert, M. (1972) Polymers optiquement actifs-X mise en évidence ďune réaction secondaire au cours de la polycondensation en milieu acide du formaldehyde et de la N-tosyl l-tyrosine influence sur l'activité optique. Eur. Polymer Journal 8, 513–524.

    Article  CAS  Google Scholar 

  37. Verschueren, K., Tóth, G., Tourwe, D., Lebl, M., Van Binst, G., and Hruby, V. (1992) A facile synthesis of l,2,3,4-tetrahydro-7-hydroxyquinoline-3-carboxylic acid, a conformationally constrained tyrosine analogue. Synthesis 5, 458–460.

    Article  Google Scholar 

  38. Lippke, K. P., Schunack, W. G., Wenning, W., and Müller, W. E. (1983) β-carbolines as benzodiazepine receptor ligands. 1. Synthesis and benzodiazepine receptor interaction of esters of β-carboline-3-carboxylic acid. J. Med. Chem. 26(4), 499–503.

    Article  Google Scholar 

  39. Brossi, A., Focella, A., and Teitel, S. (1973) Alkaloids in mammalian tissues. 3. Condensation of l-tryptophan and l-5-hydroxytryptophan with formaldehyde and acetaldehyde. J. Med. Chem. 16(4), 418–420.

    Article  CAS  Google Scholar 

  40. Coutts, R. T., Micetich, R. G., Baker, G. B., Benderly, A., Dewhurst, T., Hall, T. W., et al. (1984) Some 3-carboxamides of β-carboline and tetrahydro-β-carboline. Heterocycles 22(1), 131–143.

    Article  CAS  Google Scholar 

  41. Iterbeke, K., Laus, G., Verheyden, P., and Tourwe, D., Side-reactions in the preparation of l,2,3,4-tetrahydro-β-carboline-3-carboxylic acid. Lett. Pept. Sci. (1998), in press.

    Google Scholar 

  42. Wellisch, J. (1913) Biochem. Z. 49, 173–194.

    CAS  Google Scholar 

  43. Klutchko, S. R., Hodges, J. C., Blankley, C. J., and Colbry, N. L. (1991) 4,5,6,7-Tetrahydro-1H-imidazo[4,5-c]pyridine-6-carboxylic acids (spinacines). J. Heterocyclic Chem. 28, 97–108.

    Article  CAS  Google Scholar 

  44. Blankley, C. J., Hodges, J. C., Klutcho, S. R., Himmelsbach, R. J., Chucholowski, A., Conolly, C. J., et al. (1991) Synthesis and structure-activity relationships of a novel series of non-peptide Angiotensin II receptor binding inhibitors specific for the AT2 subtype. J. Med. Chem. 34, 3248–3260.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Tourwé, D., Iterbeke, K., Kazmierski, W.M., Tóth, G. (1999). Cyclic Aromatic Amino Acids with Constrained χ1 and χ2 Dihedral Angles. In: Kazmierski, W.M. (eds) Peptidomimetics Protocols. Methods in Molecular Medicine™, vol 23. Humana Press. https://doi.org/10.1385/0-89603-517-4:321

Download citation

  • DOI: https://doi.org/10.1385/0-89603-517-4:321

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-517-1

  • Online ISBN: 978-1-59259-605-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics