Skip to main content

Synthesis of Peptidomimics Through Sugar-Based Scaffolds

  • Protocol
Peptidomimetics Protocols

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 23))

  • 2864 Accesses

Abstract

Poor oral bioavailability, low metabolic stability towards proteolysis and rapid excretion via both liver and kidneys displayed by innumerable peptides of potential therapeutic value has generated an intensive search for peptidomimics (12). A possible approach of such nonpeptidal peptidomimics is to replace the peptide by a scaffold that distributes in the space the peptidal side chains of amino acids essential for biological activity and mimics the bioactive conformation of the peptide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Holzemann, G. (1991) Peptide conformation mimetics. Kontakte (Darmstadt) 3–12 and 55–63.

    Google Scholar 

  2. Giannis, A. and Kolter, T. (1993) Peptidomimetics for receptor ligands-discovery, development, and medical perspectives. Angew. Chem. Int. Ed. Engl. 32, 1244–1267.

    Article  Google Scholar 

  3. Belanger, P. C. and Dufresne, C. (1986) Preparation of exo-6-benzyl-exo-2-(m-hydroxyphenyl)-l-dimethylaminobicyclo[2.2.2]octane. A non-peptide mimic of enkephalins. Can. J. Chem. 64, 1514–1520.

    Article  CAS  Google Scholar 

  4. Hirschmann, R., Sprengeler, P. A., Kawasaki, T., Leahy, J. W., Shakespeare, W. C, and Smith, A. B., III (1993) The versatile steroid nucleus: design and synthesis of a peptidomimetic employing this novel scaffold. Tetrahedron 49, 3665–3676.

    Article  CAS  Google Scholar 

  5. Hirschmann, R., Nicolaou, K. C, Pietranico, S., Salvino, J., Leahy, E. M., Sprengeler, P. A., Furst, G., Smith, A.B., III, Strader, C. D., Cascieri, M. A., Candelore, M. R., Donaldson, C., Vale, W., and Maechler, L. (1992) Nonpeptidal peptidomimetics with a β-d-glucose scaffolding. A partial Somatostatin agonist bearing a close structural relationship to a potent, selective substance P antagonist. J. Am. Chem. Soc. 114, 9217–9218.

    Article  CAS  Google Scholar 

  6. Hirschmann, R., Nicolaou, K. C., Pietranico, S., Leahy, E. M., Salvino, J., Arison, B., Cichy, M. A., Spoors, P. G., Shakespeare, W.C., Sprengeler, P.A., Hamley, P., Smith, A. B., III, Reisine, T., Raynor, K., Maechler, L., Donaldson, C, Vale, W., Freidinger, R. M., Cascieri, M. R., and Strader C. D. (1993) De novo design and synthesis of Somatostatin non-peptide peptidomimetics utilizing β-d-glucose as a novel scaffolding. J. Am. Chem. Soc. 115, 12,550–12,568.

    Article  CAS  Google Scholar 

  7. Le Diguarher, T., Boudon, A., Elwell, C, Paterson, D. E., and Billington, D. C. (1996) Synthesis of potential peptidomimetics based on highly substituted glucose and allose scaffolds. Biorg. Med. Chem. Lett. 6, 1983–1988.

    Article  Google Scholar 

  8. Papageorgiou, C, Haltiner, R., Bruns, C, and Petcher, T. J. (1992) Design, synthesis, and binding affinity of a nonpeptide mimic of somatostatin. Bioorg. Med. Chem. Lett. 2, 135–140.

    Article  CAS  Google Scholar 

  9. Papageorgiou, C. and Borer, X. (1996) A non-peptide ligand for the somatostatin receptor having a benzodiazepine structure. Bioorg. Med. Chem. Lett. 6, 267–272.

    Article  CAS  Google Scholar 

  10. Le Merrer, Y., Poitout, L., Depezay, J.-C, Dosbaa, I., Geoffroy, S., and Foglietti, M.-J. (1997) Synthesis of azasugars as potent inhibitors of glycosidases. Bioorg. Med. Chem. 5, 519–533.

    Article  Google Scholar 

  11. Damour, D., Barreau, M., Blanchard, J.-C, Burgevin, M.-C, Doble, A., Herman, F., Pantel, G., James-Surcouf, E., Vuilhorgne, M., Mignani, S., Poitout, L., Le Merrer, Y., and Depezay, J.-C. (1996) Design, synthesis and binding affinities of novel non-peptide mimics of Somatostatin/Sandostatin®. Bioorg. Med. Chem. Lett. 6, 1667–1672.

    Article  CAS  Google Scholar 

  12. Damour, D., Depezay, J.-C, Le Merrer, Y., Mignani, S., Pantel, G., and Poitout, L. (1995) Dérivés de la tryptamine, leur préparation et les médicaments les contenant French Patent application # 95 05510.

    Google Scholar 

  13. Lamberts, S. W. J., Krenning, E. P., and Reubi, J.-C. (1991) The role of somatostatin and its analogs in the diagnosis and treatment of tumors. Endocrine Rev. 12, 450–482.

    Article  CAS  Google Scholar 

  14. Hoyer, D., Bell, G. I., Berelowitz, M., Epelbaum, J., Feniuk, W., Humphrey, P. P. A., O’Caroll, A.-M., Patel, Y. C, Schonbrunn, A., Taylor, J. E., and Reisine, T. (1995) Classification and nomenclature of somatostatin receptors. Trends Pharmacol. Sci. 16, 86–88.

    Article  CAS  Google Scholar 

  15. Huang, Z., He Yα-Bo, Raynor, K., Tallent, M., Reisine, T., and Goodman, M. (1992) Main chain and side chain chiral methylated somatostatin analogs: synthesis and conformational analyses. J. Am. Chem. Soc. 114, 9390–9400.

    Article  CAS  Google Scholar 

  16. Moreau, J. P. and DeFeudis, F. V. (1987) Pharmacological studies of somatostatin and somatostatin-analogs: therapeutic advances and perspectives. Life Sci. 40, 419–437.

    Article  CAS  Google Scholar 

  17. Hocart, S. J., Reddy, V., Murphy, W. A. and Coy, D. H. (1995) Three-dimensional quantitative structure-activty relationships of somatostatin analogs. 1. Comparative molecular field analysis of growth hormone release-inhibiting potencies. J. Med. Chem. 38, 1974–1989.

    Article  CAS  Google Scholar 

  18. Wolf, H. (1947) Reactions and generation of hydrazoic acid. Org. React. 3, 8–45.

    Google Scholar 

  19. Hughes, D. L. (1992) The Mitsunobu reaction. Org. React. 42, 335–656.

    CAS  Google Scholar 

  20. Jurczak, J., Bauer, T., and Chmielewski, M. (1987) A general approach to the synthesis of 2,3-di-O-protected derivatives of d-glyceraldehyde. Carbohydr. Res. 164, 493–498.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Le Merrer, Y., Poitout, L., Depezay, JC. (1999). Synthesis of Peptidomimics Through Sugar-Based Scaffolds. In: Kazmierski, W.M. (eds) Peptidomimetics Protocols. Methods in Molecular Medicine™, vol 23. Humana Press. https://doi.org/10.1385/0-89603-517-4:227

Download citation

  • DOI: https://doi.org/10.1385/0-89603-517-4:227

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-517-1

  • Online ISBN: 978-1-59259-605-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics