Skip to main content
Log in

Nickel coated carbon nanotubes in aluminum matrix composites: a multiscale simulation study

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

In this work we use density functional theory (DFT) calculations to benchmark empirical potentials for the interaction between nickel and sp2 bonded carbon nanoparticles. These potentials are then used in order to investigate how Ni decorated or coated carbon nanotubes (CNT) affect the mechanical properties of Al/CNT composites. In particular we look at the pull-out behaviour of pristine as well as Ni-decorated and Ni-coated CNT from an Al matrix. Our result shows that Ni coating may produce an extended interface (“interphase”) where a significant amount of energy is dissipated during CNT pull-out, leading to a high pull-out force. We also demonstrate that surface decorated CNT may act as efficient nano-crystallization agents and thus provide a novel strengthening mechanism not previously discussed in the literature. We discuss our results in view of promising approaches for engineering CNT-metal interfaces such as to achieve high strength metal-CNT composites.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.G. Demczyk, Y.M. Wang, J. Cumings, M. Hetman, W. Han, A. Zettl, R.O. Ritchie, Mater. Sci. Eng. A 334, 173 (2002)

    Article  Google Scholar 

  2. M.-F. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelly, R.S. Ruoff, Science 287, 637 (2000)

    Article  ADS  Google Scholar 

  3. S. Nasiri, M. Zaiser, AIMS Mater. Sci. 3, 1340 (2016)

    Article  Google Scholar 

  4. Q. Li, A. Viereckl, C.A. Rottmair, R.F. Singer, Compos. Sci. Technol. 69, 1193 (2009)

    Article  Google Scholar 

  5. R. George, K. Kashyap, R. Rahul, S. Yamdagni, Scr. Mater. 53, 1159 (2005)

    Article  Google Scholar 

  6. S.R. Bakshi, D. Lahiri, A. Agarwal, Int. Mater. Rev. 55, 41 (2010)

    Article  Google Scholar 

  7. Q. Li, C.A. Rottmair, R.F. Singer, Compos. Sci. Technol. 70, 2242 (2010)

    Article  Google Scholar 

  8. C. Kim, B. Lim, B. Kim, U. Shim, S. Oh, B. Sung, J. Choi, J. Ki, S. Baik, Synth. Met. 159, 424 (2009)

    Article  Google Scholar 

  9. M.T. Guo, C. Tsao, Mater. Sci. Eng. A 333, 134 (2002)

    Article  Google Scholar 

  10. Y. Si, E.T. Samulski, Chem. Mater. 20, 6792 (2008)

    Article  Google Scholar 

  11. N. Silvestre, B. Faria, J.N.C. Lopes, Compos. Sci. Technol. 90, 16 (2014)

    Article  Google Scholar 

  12. B.K. Choi, G.H. Yoon, S. Lee, Composites Part B 91, 119 (2016)

    Article  Google Scholar 

  13. H.Y. Song, X.W. Zha, Comput. Mater. Sci. 49, 899 (2010)

    Article  Google Scholar 

  14. K. Duan, L. Li, Y. Hu, X. Wang, Physica E 88, 259 (2017)

    Article  ADS  Google Scholar 

  15. Y. Shibuta, S. Maruyama, Comput. Mater. Sci. 39, 842 (2007)

    Article  Google Scholar 

  16. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo et al., J. Phys.: Condens. Matter 21, 395502 (2009)

    Google Scholar 

  17. P.E. Blöchl, Phys. Rev. B 50, 17953 (1994)

    Article  ADS  Google Scholar 

  18. G. Graziano, J. Klime, F. Fernandez-Alonso, A. Michaelides, J. Phys.: Condens. Matter 24, 424216 (2012)

    ADS  Google Scholar 

  19. P.L. Silvestrelli, A. Ambrosetti, Phys. Rev. B 91, 195405 (2015)

    Article  ADS  Google Scholar 

  20. H. Muñoz-Galán, F. Viñes, J. Gebhardt, A. Görling, F. Illas, Theor. Chem. Acc. 135, 165 (2016)

    Article  Google Scholar 

  21. A.D. Becke, Phys. Rev. A 38, 3098 (1998)

    Article  ADS  Google Scholar 

  22. F. Mittendorfer, A. Garhofer, J. Redinger, J. Klime, J. Harlm, G. Kresse, Phys. Rev. B 84, 201401 (2011)

    Article  ADS  Google Scholar 

  23. S. Plimpton, J. Comput. Phys. 117, 1 (1995)

    Article  ADS  Google Scholar 

  24. Virtual Nanolab version 2017.2 QuantumWise A/S, http://www.quantumwise.com

  25. H.M. Aktulga, J.C. Fogarty, S.A. Pandit, A.Y. Grama, Parallel Comput. 338, 245 (2012)

    Article  Google Scholar 

  26. O. Rahaman, A.C.T. Van Duin, W.A. Goddard, D.J. Doren, J. Phys. Chem. B 115, 249 (2010)

    Article  Google Scholar 

  27. Y.K. Shin, H. Kwak, C. Zou, A.V. Vasenkov, A.C.T. Van Duin, J. Phys. Chem. A 116, 12163 (2012)

    Article  Google Scholar 

  28. F. Tavazza, T.P. Senftle, C. Zou, C.A. Becker, A.C.T. van Duin, J. Phys. Chem. C 119, 13580 (2015)

    Article  Google Scholar 

  29. A.K. Rappe, W.A. Goddard, J. Phys. Chem. 95, 3358 (1991)

    Article  Google Scholar 

  30. D.W. Brenner, O.A. Shenderova, J.A. Harrison, S.J. Stuart, B. Ni, S.B. Sinnott, J. Phys.: Condens. Matter 14, 783 (2002)

    ADS  Google Scholar 

  31. S.J. Stuart, A.B. Tutein, J.A. Harrison, J. Chem. Phys. 112, 6472 (2000)

    Article  ADS  Google Scholar 

  32. Y. Mishin, Acta Mater. 52, 1451 (2004)

    Article  Google Scholar 

  33. M. Moseler, F. Cervantes-Sodi, S. Hofmann, G. Csányi, A.C. Ferrari, ACS Nano 4, 7587 (2010)

    Article  Google Scholar 

  34. B.J. Lee, J.H. Shim, M.I. Baskes, Phys. Rev. B 68, 144112 (2003)

    Article  ADS  Google Scholar 

  35. L. Spanu, S. Sorella, G. Galli, Phys. Rev. Lett. 103, 196401 (2009)

    Article  ADS  Google Scholar 

  36. M.S. Christian, A. Otero-de-la-Roza, E.R. Johnson, Carbon 124, 531 (2017)

    Article  Google Scholar 

  37. Q. Li, S. Fan, W. Han, C. Sun, W. Liang, Jpn. J. Appl. Phys. 36, 501 (1997)

    Article  ADS  Google Scholar 

  38. F.Z. Kong, X.B. Zhang, W.Q. Xiong, F. Liu, W.Z. Huang, Y.L. Sun, J.P. Tu, X.W. Chen, Surf. Coat. Technol. 155, 33 (2002)

    Article  Google Scholar 

  39. W. Zhou, G. Yamamoto, Y. Fan, H. Kwon, T. Hashida, A. Kawasaki, Carbon 106, 37 (2016)

    Article  Google Scholar 

  40. B. Chen, S. Li, H. Imai, L. Jia, J. Umeda, M. Takahashi, K. Kondoh, Compos. Sci. Technol. 113, 1 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samaneh Nasiri.

Additional information

Contribution to the Topical Issue “Multiscale Materials Modeling”, edited by Yoji Shibutani, Shigenobu Ogata, and Tomotsugu Shimokawa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasiri, S., Wang, K., Yang, M. et al. Nickel coated carbon nanotubes in aluminum matrix composites: a multiscale simulation study. Eur. Phys. J. B 92, 186 (2019). https://doi.org/10.1140/epjb/e2019-100243-6

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2019-100243-6

Navigation