Skip to main content
Log in

Recent advances in modeling of interfaces and mechanical behavior of multilayer metallic/ceramic composites

  • Interface Behavior
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Since the introduction of the term “nanolaminate” in the mid-1990s, considerable research activities on metallic/ceramic nanolaminates (MCN) have been conducted. Incorporating ceramics with high hardness and high melting point together with high ductile metals can improve their thermomechanical behavior in corrosive environments. A great number of researchers have reported that MCNs exhibit outstanding thermomechanical properties compared with the constituent layers and bulk material, which is attributed to the atomic structure and high density of the interfaces. This article provides a review of recent advances in modeling of the mechanical behavior of MCN composites, with focus on Nb/NbC and Ti/TiN multilayer composites. The main strengthening mechanisms of MCNs, based on the layer thickness, the interface structure, and the interaction of threading dislocations with the interface as well as dislocations nucleation from the interface, are reviewed, and recently, obtained results from molecular dynamics simulations, along with these findings, are presented. Moreover, MD-based flow surfaces for use in large-scale continuum models are reviewed in connection with results from MD of MCNs under various mechanical loading conditions, including uniaxial and biaxial loadings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Reproduced according to Ref. [66]

Figure 4
Figure 5

Reproduced according to Ref. [60]

Figure 6

Reproduced according to Ref. [58]

Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Bhattacharyya D, Mara NA, Dickerson P et al (2011) Compressive flow behavior of Al–TiN multilayers at nanometer scale layer thickness. Acta Mater 59:3804–3816. doi:10.1016/j.actamat.2011.02.036

    Article  Google Scholar 

  2. Jiménez-Villacorta F, Espinosa A, Céspedes E, Prieto C (2011) Magnetic properties and short-range structure analysis of granular cobalt silicon nitride multilayers. J Appl Phys 110:113909

    Article  Google Scholar 

  3. Zhang Q-C (2001) Optimizing analysis of W-AlN cermet solar absorbing coatings. J Phys D Appl Phys 34:3113

    Article  Google Scholar 

  4. Lee JH, Kim WM, Lee TS et al (2000) Mechanical and adhesion properties of Al/AlN multilayered thin films. Surf Coat Technol 133:220–226

    Article  Google Scholar 

  5. Chance DA, Wilcox DL (1971) Metal–ceramic constraints for multilayer electronic packages. Proc IEEE 59:1455–1462

    Article  Google Scholar 

  6. Nunes C, Teixeira V, Prates ML et al (2003) Graded selective coatings based on chromium and titanium oxynitride. Thin Solid Films 442:173–178

    Article  Google Scholar 

  7. Sazgar A, Movahhedy MR, Mahnama M, Sohrabpour S (2015) A molecular dynamics study of bond strength and interface conditions in the metal–ceramic composites. Comput Mater Sci 109:200–208

    Article  Google Scholar 

  8. Siegel DJ, Hector LG Jr, Adams JB (2002) Adhesion, stability, and bonding at metal/metal–carbide interfaces: Al/WC. Surf Sci 498:321–336

    Article  Google Scholar 

  9. Sinnott SB, Dickey EC (2003) Ceramic/metal interface structures and their relationship to atomic- and meso-scale properties. Mater Sci Eng R: Rep 43:1–59

    Article  Google Scholar 

  10. Zhao S, Wäckelgård E (2006) Optimization of solar absorbing three-layer coatings. Sol Energy Mater Sol Cells 90:243–261

    Article  Google Scholar 

  11. Söderlund E, Ljunggren P (1998) Formability and corrosion properties of metal/ceramic multilayer coated strip steels. Surf Coat Technol 110:94–104

    Article  Google Scholar 

  12. Flores M, Muhl S, Huerta L, Andrade E (2005) The influence of the period size on the corrosion and the wear abrasion resistance of TiN/Ti multilayers. Surf Coat Technol 200:1315–1319

    Article  Google Scholar 

  13. Wieciński P, Smolik J, Garbacz H, Kurzydłowski KJ (2014) Failure and deformation mechanisms during indentation in nanostructured Cr/CrN multilayer coatings. Surf Coat Technol 240:23–31

    Article  Google Scholar 

  14. Mu Y, Zhang X, Hutchinson JW, Meng WJ (2017) Measuring critical stress for shear failure of interfacial regions in coating/interlayer/substrate systems through a micro-pillar testing protocol. J Mater Res 32:1421–1431

    Article  Google Scholar 

  15. Yadav SK, Ramprasad R, Misra A, Liu X-Y (2014) Core structure and Peierls stress of edge and screw dislocations in TiN: a density functional theory study. Acta Mater 74:268–277

    Article  Google Scholar 

  16. Williams WS (1997) Transition metal carbides, nitrides, and borides for electronic applications. JOM 49:38–42

    Article  Google Scholar 

  17. Ham JD, Lee SJ (2009) Transition metal carbides and nitrides as electrode materials for low temperature fuel cells. Energies 2(4):873–899

    Article  Google Scholar 

  18. Hübler R, Schröer A, Ensinger W et al (1993) Corrosion behavior of steel coated with thin film TiN/Ti composites. J Vac Sci Technol A Vac Surf Films 11:451–453

    Article  Google Scholar 

  19. Hübler R, Schröer A, Ensinger W et al (1993) Plasma and ion-beam-assisted deposition of multilayers for tribological and corrosion protection. Surf Coat Technol 60:561–565

    Article  Google Scholar 

  20. Herranen M, Wiklund U, Carlsson J-O, Hogmark S (1998) Corrosion behaviour of Ti/TiN multilayer coated tool steel. Surf Coat Technol 99:191–196

    Article  Google Scholar 

  21. Chenglong L, Dazhi Y, Guoqiang L, Min Q (2005) Corrosion resistance and hemocompatibility of multilayered Ti/TiN-coated surgical AISI 316L stainless steel. Mater Lett 59:3813–3819

    Article  Google Scholar 

  22. Zhang Q, Leng YX, Qi F et al (2007) Mechanical and corrosive behavior of Ti/TiN multilayer films with different modulation periods. Nucl Instrum Methods Phys Res Sect B 257:411–415

    Article  Google Scholar 

  23. Marco JF, Agudelo AC, Gancedo JR, Hanžel D (1999) Corrosion resistance of single TiN layers, Ti/TiN bilayers and Ti/TiN/Ti/TiN multilayers on iron under a salt fog spray (phohesion) test: an evaluation by XPS. Surf Interface Anal 27:71–75

    Article  Google Scholar 

  24. Wentzel EJ, Allen C (1997) The erosion–corrosion resistance of tungsten-carbide hard metals. Int J Refract Metal Hard Mater 15:81–87

    Article  Google Scholar 

  25. Salehinia I, Shao S, Wang J, Zbib HM (2015) Interface structure and the inception of plasticity in Nb/NbC nanolayered composites. Acta Mater 86:331–340

    Article  Google Scholar 

  26. Teixeira V (2001) Mechanical integrity in PVD coatings due to the presence of residual stresses. Thin Solid Films 392:276–281

    Article  Google Scholar 

  27. Zhang GA, Wu ZG, Wang MX et al (2007) Structure evolution and mechanical properties enhancement of Al/AlN multilayer. Appl Surf Sci 253:8835–8840

    Article  Google Scholar 

  28. Ahmadi A, Toroghinejad MR, Najafizadeh A (2014) Evaluation of microstructure and mechanical properties of Al/Al2O3/SiC hybrid composite fabricated by accumulative roll bonding process. Mater Des 53:13–19

    Article  Google Scholar 

  29. Rezayat M, Akbarzadeh A, Owhadi A (2012) Fabrication of high-strength Al/SiCp nanocomposite sheets by accumulative roll bonding. Metall Mater Trans A 43:2085–2093

    Article  Google Scholar 

  30. Alpas AT, Embury JD, Hardwick DA, Springer RW (1990) The mechanical properties of laminated microscale composites of Al/Al2O3. J Mater Sci 25:1603–1609. doi:10.1007/BF01045357

    Article  Google Scholar 

  31. Kelling A, Mangipudi KR, Knorr I et al (2016) Investigating fracture of nanoscale metal–ceramic multilayers in the transmission electron microscope. Scr Mater 115:42–45

    Article  Google Scholar 

  32. Abadias G, Dub S, Shmegera R (2006) Nanoindentation hardness and structure of ion beam sputtered TiN, W and TiN/W multilayer hard coatings. Surf Coat Technol 200:6538–6543

    Article  Google Scholar 

  33. Shih K, Dove D (1992) Ti/Ti-N Hf/Hf-N and W/W-N multilayer films with high mechanical hardness. Appl Phys Lett 61:654–656. doi:10.1063/1.107812

    Article  Google Scholar 

  34. Daia M, Bozet J (2000) Nanoindentation investigation of Ti/TiN multilayers films. J Appl Phys 87:7753–7757

    Article  Google Scholar 

  35. Lackner JM, Waldhauser W, Major B et al (2013) Plastic deformation in nano-scale multilayer materials—a biomimetic approach based on nacre. Thin Solid Films 534:417–425

    Article  Google Scholar 

  36. Dück A, Gamer N, Gesatzke W et al (2001) Ti/TiN multilayer coatings: deposition technique, characterization and mechanical properties. Surf Coat Technol 142–144:579–584

    Article  Google Scholar 

  37. Wiecinski P, Smolik J, Garbacz H et al (2017) Microstructure and properties of metal/ceramic and ceramic/ceramic multilayer coatings on titanium alloy Ti6Al4V. Surf Coat Technol 309:709–718

    Article  Google Scholar 

  38. Kot M, Major Ł, Lackner J, Rakowski W (2014) Effect of interfaces on mechanical properties of ceramic/metal multilayers. Solid State Phenom 208:156–166

    Article  Google Scholar 

  39. Jiang CL, Zhu HL, Shin KS, Tang YB (2017) Influence of titanium interlayer thickness distribution on mechanical properties of Ti/TiN multilayer coatings. Thin Solid Films 632:97–105

    Article  Google Scholar 

  40. Mara NA, Li N, Misra A, Wang J (2016) Interface-driven plasticity in metal–ceramic nanolayered composites: direct validation of multiscale deformation modeling via in situ indentation in TEM. JOM 68:143–150

    Article  Google Scholar 

  41. Bhattacharyya D, Mara NA, Dickerson P et al (2010) A transmission electron microscopy study of the deformation behavior underneath nanoindents in nanoscale Al–TiN multilayered composites. Philos Mag 90:1711–1724

    Article  Google Scholar 

  42. Bhattacharyya D, Mara NA, Hoagland RG, Misra A (2008) Nanoindentation and microstructural studies of Al/TiN multilayers with unequal volume fractions. Scr Mater 58:981–984

    Article  Google Scholar 

  43. Mook WM, Raghavan R, Baldwin JK et al (2013) Indentation fracture response of Al–TiN nanolaminates. Mater Res Lett 1:102–108

    Article  Google Scholar 

  44. Li N, Wang H, Misra A, Wang J (2014) In situ nanoindentation study of plastic co-deformation in Al–TiN nanocomposites. Sci Rep 4:6633

    Article  Google Scholar 

  45. Li N, Yadav SK, Wang J et al (2015) Growth and stress-induced transformation of zinc blende AlN layers in Al–AlN–TiN multilayers. Sci Rep 5:18554

    Article  Google Scholar 

  46. Pathak S, Li N, Maeder X et al (2015) On the origins of hardness of Cu–TiN nanolayered composites. Scr Mater 109:48–51

    Article  Google Scholar 

  47. Deng X, Cleveland C, Chawla N et al (2005) Nanoindentation behavior of nanolayered metal–ceramic composites. J Mater Eng Perform 14:417–423

    Article  Google Scholar 

  48. Chawla N, Singh DRP, Shen Y-L et al (2008) Indentation mechanics and fracture behavior of metal/ceramic nanolaminate composites. J Mater Sci 43:4383–4390. doi:10.1007/s10853-008-2450-3

    Article  Google Scholar 

  49. Deng X, Chawla N, Chawla KK et al (2005) Mechanical behavior of multilayered nanoscale metal–ceramic composites. Adv Eng Mater 7:1099–1108

    Article  Google Scholar 

  50. Singh DRP, Chawla N, Tang G, Shen Y-L (2010) Micropillar compression of Al/SiC nanolaminates. Acta Mater 58:6628–6636

    Article  Google Scholar 

  51. Lotfian S, Rodriguez M, Yazzie K et al (2013) High temperature micropillar compression of Al/SiC nanolaminates. Acta Mater 61(12):4439–4451

    Article  Google Scholar 

  52. Jamison RD, Shen Y-L (2016) Delamination analysis of metal–ceramic multilayer coatings subject to nanoindentation. Surf Coat Technol 303:3–11

    Article  Google Scholar 

  53. Tang G, Shen YL (2017) Finite element simulation of compression on micropillars. In: Kao JC, Sung WP (eds) Civil, architecture and environmental engineering, vol 2. CRC Press, Balkema, pp 1583–1588

    Chapter  Google Scholar 

  54. He JL, Li WZ, Li HD, Liu CH (1998) Plastic properties of nano-scale ceramic–metal multilayers. Surf Coat Technol 103–104:276–280

    Article  Google Scholar 

  55. Madan A, Wang Y, Barnett SA et al (1998) Enhanced mechanical hardness in epitaxial nonisostructural Mo/NbN and W/NbN superlattices. J Appl Phys 84:776–785

    Article  Google Scholar 

  56. Wang J, Li W-Z, Li H-D et al (2000) Nanoindentation study on the mechanical properties of Tic/Mo multilayers. Thin Solid Films 366:117–120

    Article  Google Scholar 

  57. Han SM, Phillips MA, Nix WD (2009) Study of strain softening behavior of Al–Al3Sc multilayers using microcompression testing. Acta Mater 57:4473–4490

    Article  Google Scholar 

  58. Yang W, Ayoub G, Salehinia I et al (2017) Deformation mechanisms in Ti/TiN multilayer under compressive loading. Acta Mater 122:99–108

    Article  Google Scholar 

  59. Yadav SK, Ramprasad R, Wang J, Misra A, Liu XY (2014) First-principles study of Cu/TiN and Al/TiN interfaces: weak versus strong interfaces. Modell Simul Mater Sci Eng 22:35020

    Article  Google Scholar 

  60. Salehinia I, Wang J, Bahr DF, Zbib HM (2014) Molecular dynamics simulations of plastic deformation in Nb/NbC multilayers. Int J Plast 59:119–132

    Article  Google Scholar 

  61. Damadam M, Shao S, Salehinia I et al (2017) Molecular dynamics simulations of mechanical behavior in nanoscale ceramic–metallic multilayer composites. Mater Res Lett 5(5):306–313

    Article  Google Scholar 

  62. Armstrong R, Codd I, Douthwaite RM, Petch NJ (1962) The plastic deformation of polycrystalline aggregates. Philos Mag 7:45–58

    Article  Google Scholar 

  63. Misra A, Hirth JP, Hoagland RG (2005) Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites. Acta Mater 53:4817–4824

    Article  Google Scholar 

  64. Phillips MA, Clemens BM, Nix WD (2003) A model for dislocation behavior during deformation of Al/Al3Sc (fcc/L12) metallic multilayers. Acta Mater 51:3157–3170

    Article  Google Scholar 

  65. Zbib HM, Overman CT, Akasheh F, Bahr D (2011) Analysis of plastic deformation in nanoscale metallic multilayers with coherent and incoherent interfaces. Int J Plast 27:1618–1639

    Article  Google Scholar 

  66. Akasheh F, Zbib HM, Hirth JP et al (2007) Dislocation dynamics analysis of dislocation intersections in nanoscale metallic multilayered composites. J Appl Phys 101:84314

    Article  Google Scholar 

  67. Embury JD, Hirth JP (1994) On dislocation storage and the mechanical response of fine scale microstructures. Acta Metall Mater 42:2051–2056

    Article  Google Scholar 

  68. Wang J, Misra A, Hoagland RG, Hirth JP (2012) Slip transmission across fcc/bcc interfaces with varying interface shear strengths. Acta Mater 60:1503–1513

    Article  Google Scholar 

  69. Wang J, Misra A (2014) Strain hardening in nanolayered thin films. Curr Opin Solid State Mater Sci 18:19–28

    Article  Google Scholar 

  70. Kreidler ER, Anderson PM (1996) Orowan-based deformation model for layered metallic materials. MRS Symp Proc 434:159–170

    Article  Google Scholar 

  71. Abdolrahim N, Zbib HM, Bahr DF (2014) Multiscale modeling and simulation of deformation in nanoscale metallic multilayer systems. Int J Plast 52:33–50

    Article  Google Scholar 

  72. Beyerlein IJ, Mara NA, Wang J et al (2012) Structure–property–functionality of bimetal interfaces. JOM 64:1192–1207

    Article  Google Scholar 

  73. Demkowicz MJ, Wang J, Hoagland RG (2008) Chapter 83 “Interfaces between dissimilar crystalline solids”. In: Nabarro FR, Duesbery MS (eds) Dislocations in solids. Elsevier, Amsterdam

    Google Scholar 

  74. Wang J, Misra A (2011) An overview of interface-dominated deformation mechanisms in metallic multilayers. Curr Opin Solid State Mater Sci 15:20–28

    Article  Google Scholar 

  75. Chen Y, Shao S, Liu X-Y et al (2017) Misfit dislocation patterns of Mg–Nb interfaces. Acta Mater 126:552–563

    Article  Google Scholar 

  76. Shao S, Zbib HM, Mastorakos I, Bahr D (2012) Deformation mechanisms, size effects, and strain hardening in nanoscale metallic multilayers under nanoindentation. J Appl Phys 112:44307

    Article  Google Scholar 

  77. Yadav SK, Shao S, Wang J, Liu X-Y (2015) Structural modifications due to interface chemistry at metal–nitride interfaces. Sci Rep 5:17380

    Article  Google Scholar 

  78. Salehinia I, Shao S, Wang J, Zbib HM (2014) Plastic deformation of metal/ceramic nanolayered composites. JOM 66:2078–2085

    Article  Google Scholar 

  79. Shen Y, Anderson PM (2007) Transmission of a screw dislocation across a coherent, non-slipping interface. J Mech Phys Solids 55:956–979

    Article  Google Scholar 

  80. Wang J, Zhang RF, Zhou CZ et al (2014) Interface dislocation patterns and dislocation nucleation in face-centered-cubic and body-centered-cubic bicrystal interfaces. Int J Plast 53:40–55

    Article  Google Scholar 

  81. Mara NA, Beyerlein IJ (2014) Review: effect of bimetal interface structure on the mechanical behavior of Cu–Nb fcc–bcc nanolayered composites. J Mater Sci 49:6497–6516. doi:10.1007/s10853-014-8342-9

    Article  Google Scholar 

  82. Pilania G, Thijsse BJ, Hoagland RG et al (2014) Revisiting the Al/Al2O3 interface: coherent Interfaces and misfit accommodation. Sci Rep 4:4485

    Article  Google Scholar 

  83. Sant C, Ben Daia M, Aubert P et al (2000) Interface effect on tribological properties of titanium–titanium nitride nanolaminated structures. Surf Coat Technol 127:167–173

    Article  Google Scholar 

  84. Zhang M-X, Chen S-Q, Ren H-P, Kelly PM (2008) Crystallography of the simple HCP/FCC system. Metall Mater Trans A 39:1077–1086

    Article  Google Scholar 

  85. Hirth JP, Pond RC, Hoagland RG et al (2013) Interface defects, reference spaces and the Frank-Bilby equation. Prog Mater Sci 58:749–823

    Article  Google Scholar 

  86. Wang J, Zhang R, Zhou C et al (2013) Characterizing interface dislocations by atomically informed Frank-Bilby theory. J Mater Res 28:1646–1657

    Article  Google Scholar 

  87. Dongare AM, LaMattina B, Rajendran AM (2012) Strengthening behavior and tension-compression strength–asymmetry in nanocrystalline metal–ceramic composites. J Eng Mater Technol 134:41003–41008

    Article  Google Scholar 

  88. Dongare AM, LaMattina B, Irvin DL, Rajendran AM, Zikry MA, Brenner DW (2012) An angular-dependent embedded atom method (A-EAM) interatomic potential to model thermodynamic and mechanical behavior of Al/Si composite materials. Modell Simul Mater Sci Eng 20:35007

    Article  Google Scholar 

  89. Dongare AM, Neurock M, Zhigilei LV (2009) Angular-dependent embedded atom method potential for atomistic simulations of metal-covalent systems. Phys Rev B 80:184106

    Article  Google Scholar 

  90. Dongare AM, Zhigilei LV, Rajendran AM, LaMattina B (2009) Interatomic potentials for atomic scale modeling of metal–matrix ceramic particle reinforced nanocomposites. Compos B Eng 40:461–467

    Article  Google Scholar 

  91. Lee B-J, Baskes MI, Kim H, Koo Cho Y (2001) Second nearest-neighbor modified embedded atom method potentials for bcc transition metals. Phys Rev B 64:184102

    Article  Google Scholar 

  92. Misra A, Hirth J, Kung H (2002) Single-dislocation-based strengthening mechanisms in nanoscale metallic multilayers. Philos Mag A 82:2935–2951

    Article  Google Scholar 

  93. Nix WD (1989) Mechanical properties of thin films. Metall Trans A 20:2217

    Article  Google Scholar 

  94. Wang J, Zhou C, Beyerlein IJ, Shao S (2014) Modeling interface-dominated mechanical behavior of nanolayered crystalline composites. JOM 66:102–113

    Article  Google Scholar 

  95. Akasheh F, Zbib HM, Hirth JP et al (2007) Interactions between glide dislocations and parallel interfacial dislocations in nanoscale strained layers. J Appl Phys 102:34314

    Article  Google Scholar 

  96. Yang W, Ayoub G, Salehinia I et al (2017) Multiaxial tension/compression asymmetry of Ti/TiN nano laminates: MD investigation. Acta Mater 122:99–108

    Article  Google Scholar 

  97. Huang S, Wang J, Zhou C (2015) Effect of plastic incompatibility on the strain hardening behavior of Al–TiN nanolayered composites. Mater Sci Eng A 636:430–433

    Article  Google Scholar 

  98. Montheillet F, Jonas JJ, Benferrah M (1991) Development of anisotropy during the cold rolling of aluminium sheet. Int J Mech Sci 33:197–209

    Article  Google Scholar 

  99. Damadam M, Shao S, Salehinia I et al (2017) Strength and plastic deformation behavior of nanolaminate composites with pre-existing dislocations. Comput Mater Sci 138:42–48

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Qatar National Research Fund (a member of the Qatar Foundation) under Grant No. 7-1470-2-528. The statements made herein are solely the responsibility of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Damadam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Damadam, M., Shao, S., Ayoub, G. et al. Recent advances in modeling of interfaces and mechanical behavior of multilayer metallic/ceramic composites. J Mater Sci 53, 5604–5617 (2018). https://doi.org/10.1007/s10853-017-1704-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1704-3

Keywords

Navigation