Journal of Materials Science

, Volume 53, Issue 8, pp 5604–5617 | Cite as

Recent advances in modeling of interfaces and mechanical behavior of multilayer metallic/ceramic composites

  • Mohsen Damadam
  • Shuai Shao
  • Georges Ayoub
  • Hussein M. Zbib
Interface Behavior


Since the introduction of the term “nanolaminate” in the mid-1990s, considerable research activities on metallic/ceramic nanolaminates (MCN) have been conducted. Incorporating ceramics with high hardness and high melting point together with high ductile metals can improve their thermomechanical behavior in corrosive environments. A great number of researchers have reported that MCNs exhibit outstanding thermomechanical properties compared with the constituent layers and bulk material, which is attributed to the atomic structure and high density of the interfaces. This article provides a review of recent advances in modeling of the mechanical behavior of MCN composites, with focus on Nb/NbC and Ti/TiN multilayer composites. The main strengthening mechanisms of MCNs, based on the layer thickness, the interface structure, and the interaction of threading dislocations with the interface as well as dislocations nucleation from the interface, are reviewed, and recently, obtained results from molecular dynamics simulations, along with these findings, are presented. Moreover, MD-based flow surfaces for use in large-scale continuum models are reviewed in connection with results from MD of MCNs under various mechanical loading conditions, including uniaxial and biaxial loadings.



This work was supported by the Qatar National Research Fund (a member of the Qatar Foundation) under Grant No. 7-1470-2-528. The statements made herein are solely the responsibility of the authors.


  1. 1.
    Bhattacharyya D, Mara NA, Dickerson P et al (2011) Compressive flow behavior of Al–TiN multilayers at nanometer scale layer thickness. Acta Mater 59:3804–3816. doi: 10.1016/j.actamat.2011.02.036 CrossRefGoogle Scholar
  2. 2.
    Jiménez-Villacorta F, Espinosa A, Céspedes E, Prieto C (2011) Magnetic properties and short-range structure analysis of granular cobalt silicon nitride multilayers. J Appl Phys 110:113909CrossRefGoogle Scholar
  3. 3.
    Zhang Q-C (2001) Optimizing analysis of W-AlN cermet solar absorbing coatings. J Phys D Appl Phys 34:3113CrossRefGoogle Scholar
  4. 4.
    Lee JH, Kim WM, Lee TS et al (2000) Mechanical and adhesion properties of Al/AlN multilayered thin films. Surf Coat Technol 133:220–226CrossRefGoogle Scholar
  5. 5.
    Chance DA, Wilcox DL (1971) Metal–ceramic constraints for multilayer electronic packages. Proc IEEE 59:1455–1462CrossRefGoogle Scholar
  6. 6.
    Nunes C, Teixeira V, Prates ML et al (2003) Graded selective coatings based on chromium and titanium oxynitride. Thin Solid Films 442:173–178CrossRefGoogle Scholar
  7. 7.
    Sazgar A, Movahhedy MR, Mahnama M, Sohrabpour S (2015) A molecular dynamics study of bond strength and interface conditions in the metal–ceramic composites. Comput Mater Sci 109:200–208CrossRefGoogle Scholar
  8. 8.
    Siegel DJ, Hector LG Jr, Adams JB (2002) Adhesion, stability, and bonding at metal/metal–carbide interfaces: Al/WC. Surf Sci 498:321–336CrossRefGoogle Scholar
  9. 9.
    Sinnott SB, Dickey EC (2003) Ceramic/metal interface structures and their relationship to atomic- and meso-scale properties. Mater Sci Eng R: Rep 43:1–59CrossRefGoogle Scholar
  10. 10.
    Zhao S, Wäckelgård E (2006) Optimization of solar absorbing three-layer coatings. Sol Energy Mater Sol Cells 90:243–261CrossRefGoogle Scholar
  11. 11.
    Söderlund E, Ljunggren P (1998) Formability and corrosion properties of metal/ceramic multilayer coated strip steels. Surf Coat Technol 110:94–104CrossRefGoogle Scholar
  12. 12.
    Flores M, Muhl S, Huerta L, Andrade E (2005) The influence of the period size on the corrosion and the wear abrasion resistance of TiN/Ti multilayers. Surf Coat Technol 200:1315–1319CrossRefGoogle Scholar
  13. 13.
    Wieciński P, Smolik J, Garbacz H, Kurzydłowski KJ (2014) Failure and deformation mechanisms during indentation in nanostructured Cr/CrN multilayer coatings. Surf Coat Technol 240:23–31CrossRefGoogle Scholar
  14. 14.
    Mu Y, Zhang X, Hutchinson JW, Meng WJ (2017) Measuring critical stress for shear failure of interfacial regions in coating/interlayer/substrate systems through a micro-pillar testing protocol. J Mater Res 32:1421–1431CrossRefGoogle Scholar
  15. 15.
    Yadav SK, Ramprasad R, Misra A, Liu X-Y (2014) Core structure and Peierls stress of edge and screw dislocations in TiN: a density functional theory study. Acta Mater 74:268–277CrossRefGoogle Scholar
  16. 16.
    Williams WS (1997) Transition metal carbides, nitrides, and borides for electronic applications. JOM 49:38–42CrossRefGoogle Scholar
  17. 17.
    Ham JD, Lee SJ (2009) Transition metal carbides and nitrides as electrode materials for low temperature fuel cells. Energies 2(4):873–899CrossRefGoogle Scholar
  18. 18.
    Hübler R, Schröer A, Ensinger W et al (1993) Corrosion behavior of steel coated with thin film TiN/Ti composites. J Vac Sci Technol A Vac Surf Films 11:451–453CrossRefGoogle Scholar
  19. 19.
    Hübler R, Schröer A, Ensinger W et al (1993) Plasma and ion-beam-assisted deposition of multilayers for tribological and corrosion protection. Surf Coat Technol 60:561–565CrossRefGoogle Scholar
  20. 20.
    Herranen M, Wiklund U, Carlsson J-O, Hogmark S (1998) Corrosion behaviour of Ti/TiN multilayer coated tool steel. Surf Coat Technol 99:191–196CrossRefGoogle Scholar
  21. 21.
    Chenglong L, Dazhi Y, Guoqiang L, Min Q (2005) Corrosion resistance and hemocompatibility of multilayered Ti/TiN-coated surgical AISI 316L stainless steel. Mater Lett 59:3813–3819CrossRefGoogle Scholar
  22. 22.
    Zhang Q, Leng YX, Qi F et al (2007) Mechanical and corrosive behavior of Ti/TiN multilayer films with different modulation periods. Nucl Instrum Methods Phys Res Sect B 257:411–415CrossRefGoogle Scholar
  23. 23.
    Marco JF, Agudelo AC, Gancedo JR, Hanžel D (1999) Corrosion resistance of single TiN layers, Ti/TiN bilayers and Ti/TiN/Ti/TiN multilayers on iron under a salt fog spray (phohesion) test: an evaluation by XPS. Surf Interface Anal 27:71–75CrossRefGoogle Scholar
  24. 24.
    Wentzel EJ, Allen C (1997) The erosion–corrosion resistance of tungsten-carbide hard metals. Int J Refract Metal Hard Mater 15:81–87CrossRefGoogle Scholar
  25. 25.
    Salehinia I, Shao S, Wang J, Zbib HM (2015) Interface structure and the inception of plasticity in Nb/NbC nanolayered composites. Acta Mater 86:331–340CrossRefGoogle Scholar
  26. 26.
    Teixeira V (2001) Mechanical integrity in PVD coatings due to the presence of residual stresses. Thin Solid Films 392:276–281CrossRefGoogle Scholar
  27. 27.
    Zhang GA, Wu ZG, Wang MX et al (2007) Structure evolution and mechanical properties enhancement of Al/AlN multilayer. Appl Surf Sci 253:8835–8840CrossRefGoogle Scholar
  28. 28.
    Ahmadi A, Toroghinejad MR, Najafizadeh A (2014) Evaluation of microstructure and mechanical properties of Al/Al2O3/SiC hybrid composite fabricated by accumulative roll bonding process. Mater Des 53:13–19CrossRefGoogle Scholar
  29. 29.
    Rezayat M, Akbarzadeh A, Owhadi A (2012) Fabrication of high-strength Al/SiCp nanocomposite sheets by accumulative roll bonding. Metall Mater Trans A 43:2085–2093CrossRefGoogle Scholar
  30. 30.
    Alpas AT, Embury JD, Hardwick DA, Springer RW (1990) The mechanical properties of laminated microscale composites of Al/Al2O3. J Mater Sci 25:1603–1609. doi: 10.1007/BF01045357 CrossRefGoogle Scholar
  31. 31.
    Kelling A, Mangipudi KR, Knorr I et al (2016) Investigating fracture of nanoscale metal–ceramic multilayers in the transmission electron microscope. Scr Mater 115:42–45CrossRefGoogle Scholar
  32. 32.
    Abadias G, Dub S, Shmegera R (2006) Nanoindentation hardness and structure of ion beam sputtered TiN, W and TiN/W multilayer hard coatings. Surf Coat Technol 200:6538–6543CrossRefGoogle Scholar
  33. 33.
    Shih K, Dove D (1992) Ti/Ti-N Hf/Hf-N and W/W-N multilayer films with high mechanical hardness. Appl Phys Lett 61:654–656. doi: 10.1063/1.107812 CrossRefGoogle Scholar
  34. 34.
    Daia M, Bozet J (2000) Nanoindentation investigation of Ti/TiN multilayers films. J Appl Phys 87:7753–7757CrossRefGoogle Scholar
  35. 35.
    Lackner JM, Waldhauser W, Major B et al (2013) Plastic deformation in nano-scale multilayer materials—a biomimetic approach based on nacre. Thin Solid Films 534:417–425CrossRefGoogle Scholar
  36. 36.
    Dück A, Gamer N, Gesatzke W et al (2001) Ti/TiN multilayer coatings: deposition technique, characterization and mechanical properties. Surf Coat Technol 142–144:579–584CrossRefGoogle Scholar
  37. 37.
    Wiecinski P, Smolik J, Garbacz H et al (2017) Microstructure and properties of metal/ceramic and ceramic/ceramic multilayer coatings on titanium alloy Ti6Al4V. Surf Coat Technol 309:709–718CrossRefGoogle Scholar
  38. 38.
    Kot M, Major Ł, Lackner J, Rakowski W (2014) Effect of interfaces on mechanical properties of ceramic/metal multilayers. Solid State Phenom 208:156–166CrossRefGoogle Scholar
  39. 39.
    Jiang CL, Zhu HL, Shin KS, Tang YB (2017) Influence of titanium interlayer thickness distribution on mechanical properties of Ti/TiN multilayer coatings. Thin Solid Films 632:97–105CrossRefGoogle Scholar
  40. 40.
    Mara NA, Li N, Misra A, Wang J (2016) Interface-driven plasticity in metal–ceramic nanolayered composites: direct validation of multiscale deformation modeling via in situ indentation in TEM. JOM 68:143–150CrossRefGoogle Scholar
  41. 41.
    Bhattacharyya D, Mara NA, Dickerson P et al (2010) A transmission electron microscopy study of the deformation behavior underneath nanoindents in nanoscale Al–TiN multilayered composites. Philos Mag 90:1711–1724CrossRefGoogle Scholar
  42. 42.
    Bhattacharyya D, Mara NA, Hoagland RG, Misra A (2008) Nanoindentation and microstructural studies of Al/TiN multilayers with unequal volume fractions. Scr Mater 58:981–984CrossRefGoogle Scholar
  43. 43.
    Mook WM, Raghavan R, Baldwin JK et al (2013) Indentation fracture response of Al–TiN nanolaminates. Mater Res Lett 1:102–108CrossRefGoogle Scholar
  44. 44.
    Li N, Wang H, Misra A, Wang J (2014) In situ nanoindentation study of plastic co-deformation in Al–TiN nanocomposites. Sci Rep 4:6633CrossRefGoogle Scholar
  45. 45.
    Li N, Yadav SK, Wang J et al (2015) Growth and stress-induced transformation of zinc blende AlN layers in Al–AlN–TiN multilayers. Sci Rep 5:18554CrossRefGoogle Scholar
  46. 46.
    Pathak S, Li N, Maeder X et al (2015) On the origins of hardness of Cu–TiN nanolayered composites. Scr Mater 109:48–51CrossRefGoogle Scholar
  47. 47.
    Deng X, Cleveland C, Chawla N et al (2005) Nanoindentation behavior of nanolayered metal–ceramic composites. J Mater Eng Perform 14:417–423CrossRefGoogle Scholar
  48. 48.
    Chawla N, Singh DRP, Shen Y-L et al (2008) Indentation mechanics and fracture behavior of metal/ceramic nanolaminate composites. J Mater Sci 43:4383–4390. doi: 10.1007/s10853-008-2450-3 CrossRefGoogle Scholar
  49. 49.
    Deng X, Chawla N, Chawla KK et al (2005) Mechanical behavior of multilayered nanoscale metal–ceramic composites. Adv Eng Mater 7:1099–1108CrossRefGoogle Scholar
  50. 50.
    Singh DRP, Chawla N, Tang G, Shen Y-L (2010) Micropillar compression of Al/SiC nanolaminates. Acta Mater 58:6628–6636CrossRefGoogle Scholar
  51. 51.
    Lotfian S, Rodriguez M, Yazzie K et al (2013) High temperature micropillar compression of Al/SiC nanolaminates. Acta Mater 61(12):4439–4451CrossRefGoogle Scholar
  52. 52.
    Jamison RD, Shen Y-L (2016) Delamination analysis of metal–ceramic multilayer coatings subject to nanoindentation. Surf Coat Technol 303:3–11CrossRefGoogle Scholar
  53. 53.
    Tang G, Shen YL (2017) Finite element simulation of compression on micropillars. In: Kao JC, Sung WP (eds) Civil, architecture and environmental engineering, vol 2. CRC Press, Balkema, pp 1583–1588CrossRefGoogle Scholar
  54. 54.
    He JL, Li WZ, Li HD, Liu CH (1998) Plastic properties of nano-scale ceramic–metal multilayers. Surf Coat Technol 103–104:276–280CrossRefGoogle Scholar
  55. 55.
    Madan A, Wang Y, Barnett SA et al (1998) Enhanced mechanical hardness in epitaxial nonisostructural Mo/NbN and W/NbN superlattices. J Appl Phys 84:776–785CrossRefGoogle Scholar
  56. 56.
    Wang J, Li W-Z, Li H-D et al (2000) Nanoindentation study on the mechanical properties of Tic/Mo multilayers. Thin Solid Films 366:117–120CrossRefGoogle Scholar
  57. 57.
    Han SM, Phillips MA, Nix WD (2009) Study of strain softening behavior of Al–Al3Sc multilayers using microcompression testing. Acta Mater 57:4473–4490CrossRefGoogle Scholar
  58. 58.
    Yang W, Ayoub G, Salehinia I et al (2017) Deformation mechanisms in Ti/TiN multilayer under compressive loading. Acta Mater 122:99–108CrossRefGoogle Scholar
  59. 59.
    Yadav SK, Ramprasad R, Wang J, Misra A, Liu XY (2014) First-principles study of Cu/TiN and Al/TiN interfaces: weak versus strong interfaces. Modell Simul Mater Sci Eng 22:35020CrossRefGoogle Scholar
  60. 60.
    Salehinia I, Wang J, Bahr DF, Zbib HM (2014) Molecular dynamics simulations of plastic deformation in Nb/NbC multilayers. Int J Plast 59:119–132CrossRefGoogle Scholar
  61. 61.
    Damadam M, Shao S, Salehinia I et al (2017) Molecular dynamics simulations of mechanical behavior in nanoscale ceramic–metallic multilayer composites. Mater Res Lett 5(5):306–313CrossRefGoogle Scholar
  62. 62.
    Armstrong R, Codd I, Douthwaite RM, Petch NJ (1962) The plastic deformation of polycrystalline aggregates. Philos Mag 7:45–58CrossRefGoogle Scholar
  63. 63.
    Misra A, Hirth JP, Hoagland RG (2005) Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites. Acta Mater 53:4817–4824CrossRefGoogle Scholar
  64. 64.
    Phillips MA, Clemens BM, Nix WD (2003) A model for dislocation behavior during deformation of Al/Al3Sc (fcc/L12) metallic multilayers. Acta Mater 51:3157–3170CrossRefGoogle Scholar
  65. 65.
    Zbib HM, Overman CT, Akasheh F, Bahr D (2011) Analysis of plastic deformation in nanoscale metallic multilayers with coherent and incoherent interfaces. Int J Plast 27:1618–1639CrossRefGoogle Scholar
  66. 66.
    Akasheh F, Zbib HM, Hirth JP et al (2007) Dislocation dynamics analysis of dislocation intersections in nanoscale metallic multilayered composites. J Appl Phys 101:84314CrossRefGoogle Scholar
  67. 67.
    Embury JD, Hirth JP (1994) On dislocation storage and the mechanical response of fine scale microstructures. Acta Metall Mater 42:2051–2056CrossRefGoogle Scholar
  68. 68.
    Wang J, Misra A, Hoagland RG, Hirth JP (2012) Slip transmission across fcc/bcc interfaces with varying interface shear strengths. Acta Mater 60:1503–1513CrossRefGoogle Scholar
  69. 69.
    Wang J, Misra A (2014) Strain hardening in nanolayered thin films. Curr Opin Solid State Mater Sci 18:19–28CrossRefGoogle Scholar
  70. 70.
    Kreidler ER, Anderson PM (1996) Orowan-based deformation model for layered metallic materials. MRS Symp Proc 434:159–170CrossRefGoogle Scholar
  71. 71.
    Abdolrahim N, Zbib HM, Bahr DF (2014) Multiscale modeling and simulation of deformation in nanoscale metallic multilayer systems. Int J Plast 52:33–50CrossRefGoogle Scholar
  72. 72.
    Beyerlein IJ, Mara NA, Wang J et al (2012) Structure–property–functionality of bimetal interfaces. JOM 64:1192–1207CrossRefGoogle Scholar
  73. 73.
    Demkowicz MJ, Wang J, Hoagland RG (2008) Chapter 83 “Interfaces between dissimilar crystalline solids”. In: Nabarro FR, Duesbery MS (eds) Dislocations in solids. Elsevier, AmsterdamGoogle Scholar
  74. 74.
    Wang J, Misra A (2011) An overview of interface-dominated deformation mechanisms in metallic multilayers. Curr Opin Solid State Mater Sci 15:20–28CrossRefGoogle Scholar
  75. 75.
    Chen Y, Shao S, Liu X-Y et al (2017) Misfit dislocation patterns of Mg–Nb interfaces. Acta Mater 126:552–563CrossRefGoogle Scholar
  76. 76.
    Shao S, Zbib HM, Mastorakos I, Bahr D (2012) Deformation mechanisms, size effects, and strain hardening in nanoscale metallic multilayers under nanoindentation. J Appl Phys 112:44307CrossRefGoogle Scholar
  77. 77.
    Yadav SK, Shao S, Wang J, Liu X-Y (2015) Structural modifications due to interface chemistry at metal–nitride interfaces. Sci Rep 5:17380CrossRefGoogle Scholar
  78. 78.
    Salehinia I, Shao S, Wang J, Zbib HM (2014) Plastic deformation of metal/ceramic nanolayered composites. JOM 66:2078–2085CrossRefGoogle Scholar
  79. 79.
    Shen Y, Anderson PM (2007) Transmission of a screw dislocation across a coherent, non-slipping interface. J Mech Phys Solids 55:956–979CrossRefGoogle Scholar
  80. 80.
    Wang J, Zhang RF, Zhou CZ et al (2014) Interface dislocation patterns and dislocation nucleation in face-centered-cubic and body-centered-cubic bicrystal interfaces. Int J Plast 53:40–55CrossRefGoogle Scholar
  81. 81.
    Mara NA, Beyerlein IJ (2014) Review: effect of bimetal interface structure on the mechanical behavior of Cu–Nb fcc–bcc nanolayered composites. J Mater Sci 49:6497–6516. doi: 10.1007/s10853-014-8342-9 CrossRefGoogle Scholar
  82. 82.
    Pilania G, Thijsse BJ, Hoagland RG et al (2014) Revisiting the Al/Al2O3 interface: coherent Interfaces and misfit accommodation. Sci Rep 4:4485CrossRefGoogle Scholar
  83. 83.
    Sant C, Ben Daia M, Aubert P et al (2000) Interface effect on tribological properties of titanium–titanium nitride nanolaminated structures. Surf Coat Technol 127:167–173CrossRefGoogle Scholar
  84. 84.
    Zhang M-X, Chen S-Q, Ren H-P, Kelly PM (2008) Crystallography of the simple HCP/FCC system. Metall Mater Trans A 39:1077–1086CrossRefGoogle Scholar
  85. 85.
    Hirth JP, Pond RC, Hoagland RG et al (2013) Interface defects, reference spaces and the Frank-Bilby equation. Prog Mater Sci 58:749–823CrossRefGoogle Scholar
  86. 86.
    Wang J, Zhang R, Zhou C et al (2013) Characterizing interface dislocations by atomically informed Frank-Bilby theory. J Mater Res 28:1646–1657CrossRefGoogle Scholar
  87. 87.
    Dongare AM, LaMattina B, Rajendran AM (2012) Strengthening behavior and tension-compression strength–asymmetry in nanocrystalline metal–ceramic composites. J Eng Mater Technol 134:41003–41008CrossRefGoogle Scholar
  88. 88.
    Dongare AM, LaMattina B, Irvin DL, Rajendran AM, Zikry MA, Brenner DW (2012) An angular-dependent embedded atom method (A-EAM) interatomic potential to model thermodynamic and mechanical behavior of Al/Si composite materials. Modell Simul Mater Sci Eng 20:35007CrossRefGoogle Scholar
  89. 89.
    Dongare AM, Neurock M, Zhigilei LV (2009) Angular-dependent embedded atom method potential for atomistic simulations of metal-covalent systems. Phys Rev B 80:184106CrossRefGoogle Scholar
  90. 90.
    Dongare AM, Zhigilei LV, Rajendran AM, LaMattina B (2009) Interatomic potentials for atomic scale modeling of metal–matrix ceramic particle reinforced nanocomposites. Compos B Eng 40:461–467CrossRefGoogle Scholar
  91. 91.
    Lee B-J, Baskes MI, Kim H, Koo Cho Y (2001) Second nearest-neighbor modified embedded atom method potentials for bcc transition metals. Phys Rev B 64:184102CrossRefGoogle Scholar
  92. 92.
    Misra A, Hirth J, Kung H (2002) Single-dislocation-based strengthening mechanisms in nanoscale metallic multilayers. Philos Mag A 82:2935–2951CrossRefGoogle Scholar
  93. 93.
    Nix WD (1989) Mechanical properties of thin films. Metall Trans A 20:2217CrossRefGoogle Scholar
  94. 94.
    Wang J, Zhou C, Beyerlein IJ, Shao S (2014) Modeling interface-dominated mechanical behavior of nanolayered crystalline composites. JOM 66:102–113CrossRefGoogle Scholar
  95. 95.
    Akasheh F, Zbib HM, Hirth JP et al (2007) Interactions between glide dislocations and parallel interfacial dislocations in nanoscale strained layers. J Appl Phys 102:34314CrossRefGoogle Scholar
  96. 96.
    Yang W, Ayoub G, Salehinia I et al (2017) Multiaxial tension/compression asymmetry of Ti/TiN nano laminates: MD investigation. Acta Mater 122:99–108CrossRefGoogle Scholar
  97. 97.
    Huang S, Wang J, Zhou C (2015) Effect of plastic incompatibility on the strain hardening behavior of Al–TiN nanolayered composites. Mater Sci Eng A 636:430–433CrossRefGoogle Scholar
  98. 98.
    Montheillet F, Jonas JJ, Benferrah M (1991) Development of anisotropy during the cold rolling of aluminium sheet. Int J Mech Sci 33:197–209CrossRefGoogle Scholar
  99. 99.
    Damadam M, Shao S, Salehinia I et al (2017) Strength and plastic deformation behavior of nanolaminate composites with pre-existing dislocations. Comput Mater Sci 138:42–48CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Mohsen Damadam
    • 1
  • Shuai Shao
    • 2
  • Georges Ayoub
    • 3
  • Hussein M. Zbib
    • 1
  1. 1.School of Mechanical and Materials EngineeringWashington State UniversityPullmanUSA
  2. 2.Department of Mechanical and Industrial EngineeringLouisiana State UniversityBaton RougeUSA
  3. 3.Industrial and Manufacturing Systems EngineeringUniversity of Michigan DearbornDearbornUSA

Personalised recommendations