Skip to main content

The principles of organ storage procedures

  • Chapter
Organ Preservation
  • 86 Accesses

Abstract

A period of ischaemia is inevitable in any organ transplantation procedure; the duration may be brief, perhaps 20min when a living donor is used, but it is always total, and more usually it lasts a number of hours, sometimes days. The function, then, of preservation methods, is to prevent ischaemic damage. Ischaemia should be carefully differentiated from anoxia and hypoxia, the total or partial lack of oxygen; anoxia is merely one of the many consequences of lack of a blood supply. The effects of ischaemia are best discussed after first considering the normal functions of the blood circulation. What follows is elementary and familiar, but it provides the essential foundation for an analysis of preservation methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pegg, D.E. (1981). The biology of cell survival in vitro. In Karow, A.M. Jr. and Pegg, D.E. (eds) Organ Preservation for Transplantation. 2nd edn, pp. 31–52. ( New York: Marcel Dekker )

    Google Scholar 

  2. Weed, R.I., La Celle, P.L. and Merrill, E. W. (1969). Metabolic dependence of red cell deformability. J. Clin. Invest 48, 795

    Article  PubMed  CAS  Google Scholar 

  3. Sheehan, H.L. and Davis, J. C. (1959). Renal ischaemia after failed reflow. J. Path. Bacteriol., 78, 105

    Article  CAS  Google Scholar 

  4. Pegg, D.E., Wusteman, M.C. and Foreman, J. (1981). The metabolism of normal and ischemically injured rabbit kidneys during perfusion for 48 hours at 10 °C. Transplantation, 32, 437

    Article  PubMed  CAS  Google Scholar 

  5. Cassie, G., Couch, N., Dammin, G. and Murray, J.C. (1959). Normothermic perfusion and reimplantation of the excised dog kidney. Surg. Gynec. Obstet 109, 721

    PubMed  CAS  Google Scholar 

  6. Pegg, D.E. (1971). Vascular resistance of the isolated rabbit kidney. Cryobiology, 8, 431

    Article  PubMed  CAS  Google Scholar 

  7. Fuhrman, F. A. (1956). Oxygen consumption of mammalian tissues at reduced temperatures. In The Physiology of Induced Hypothermia. Pub. 451 ( Nat. Acad. Sci.-Nat. Res. Council: Washington ), pp. 50–51

    Google Scholar 

  8. Huang, J.S., Downes, G.L., Childress, G.L., Felts, J.M. and Belzer, F.O. (1974). Oxidation of 14C-labelled substrates by dog kidney cortex at 10 and 38 °C. Cryobiology, 11, 387

    Article  PubMed  CAS  Google Scholar 

  9. Pettersson, S., Claes, G. and Scherstén, T. (1974). Fatty acid and glucose utilization during continuous hypothermic perfusion of dog kidney. Eur. Surg. Res., 6, 79

    Article  PubMed  CAS  Google Scholar 

  10. Slattelid, O., Flatmark, A. and Skrede, S. (1976). The importance of perfusate control of free fatty acids for dog kidney preservation. Scand. J. Clin. Lab. Invest., 36, 239

    Article  Google Scholar 

  11. Fischer, J.H., Armbruster, D., Grebe, W., Czerniak, A. and Isselhard, W. (1980). Effects of differences in substrate supply on the energy metabolism of hypothermically perfused canine kidneys. Cryobiology, 17, 135

    Article  PubMed  CAS  Google Scholar 

  12. Pegg, D.E. (1978). An approach to hypothermic renal preservation. Cryobiology, 15, 1

    Article  PubMed  CAS  Google Scholar 

  13. Lovelock, J.E. (1955). Haemolysis by thermal shock. Br. J. Haematol., 1, 117

    Article  PubMed  CAS  Google Scholar 

  14. Belzer, F.O., Ashby, B.S. and Dunphy, J.E. (1967). 24-hour and 72-hour preservation of canine kidneys. Lancet, 2, 536

    Google Scholar 

  15. Huang, J.S., Downes, G.L. and Belzer, F.O. (1971). Utilization of fatty acids in perfused hypothermic dog kidneys. J. Lipid Res., 12, 622

    PubMed  CAS  Google Scholar 

  16. Johnson, R.W.G., Cohen, G.L. and Ballardie, F.D. (1979). The limitations of continuous perfusion with plasma protein fraction. In Pegg, D.E. and Jacobsen, I. A. (eds.) Organ Preservation II, pp. 18–30. ( Edinburgh: Churchill Livingstone )

    Google Scholar 

  17. Pegg, D.E., Jacobsen, I. A. and Walter, C. A. (1977). Hypothermic perfusion of rabbit kidneys with solutions containing gelatin polypeptides. Transplantation, 24, 29

    Article  PubMed  CAS  Google Scholar 

  18. Johnson, R.W.G. (1972). The effect of ischaemic injury on kidneys preserved for 24 hours before transplantation. Br. J. Surg., 59, 765

    Article  PubMed  CAS  Google Scholar 

  19. Cerra, F. B., Raza, S., Andres, G. A. and Siegal, J. H. (1977). The endothelial damage of pulsatile renal preservation and its relationship to perfusion pressure and colloid osmotic pressure. Surgery, 81, 534

    PubMed  CAS  Google Scholar 

  20. Keeler, R., Swinney, J., Taylor, R. M. R. and Uldall, M. B. (1966). The problem of renal preservation. Br. J. Urol., 38, 653

    Article  Google Scholar 

  21. Collins, G. M., Bravo-Shugarman, M. and Terasaki, P. I. (1969). Kidney preservation for transportation. Initial perfusion and 30-hours ice storage. Lancet, 2, 1219

    Article  PubMed  CAS  Google Scholar 

  22. Sacks, S.A., Petritsch, P.H. and Kaufman, J.J. (1973). Canine kidney preservation using a new perfusate. Lancet, 2, 1024

    Article  Google Scholar 

  23. Ross, H., Marshall, V.C. and Escott, M.L. (1976). 72-hour canine kidney preservation without continuous perfusion. Transplantation, 21, 498

    Google Scholar 

  24. Collins, G.M., Hartley, L.C.J, and Clunie, G.J.A. (1972). Kidney preservation for transportation. Experimental analysis of optimum perfusate composition. Br. J. Surg., 59, 187

    Article  PubMed  CAS  Google Scholar 

  25. Downes, G., Hoffman, R., Huang, J.S. and Belzer, F.O. (1973). Mechanism of action of washout solutions for kidney preservation. Transplantation, 16, 46

    Article  PubMed  CAS  Google Scholar 

  26. Green, C.J. and Pegg, D.E. (1979). Mechanism of action of ‘intra-cellular’ renal preservation solutions. World J. Surg., 3, 115

    Article  PubMed  CAS  Google Scholar 

  27. Robinson, J.R. (1971). Control of water content of non-metabolizing kidney slices by sodium chloride and polyethylene glycol (PEG 6000). J. Physiol., 213, 227

    PubMed  CAS  Google Scholar 

  28. Pegg, D.E. (1977). The water and cation content of non-metabolizing perfused rabbit kidneys. Cryobiology, 14, 160

    Article  PubMed  CAS  Google Scholar 

  29. Buhl, M.R., Kemp, E. and Kemp, G. (1979). Purine nucleotide and nucleoside administration to kidneys: The effect on tolerance to ischaemia. In Pegg, D.E. and Jacobsen, I. A. (eds.) Organ Preservation II, pp. 247–252. ( Edinburgh: Churchill Livingstone )

    Google Scholar 

  30. Fischer, J.H., Czerniak, A., Hauer, U. and Isselhard, W. (1978). A new simple method for optimal storage of ischaemically damaged kidneys. Transplantation, 25, 43

    Article  PubMed  CAS  Google Scholar 

  31. Wusteman, M.C., Jacobsen, I.A. and Pegg, D.E. (1978). A new solution for initial perfusion of transplant kidneys. Scand. J. Urol. Nephrol., 12, 281

    Article  PubMed  CAS  Google Scholar 

  32. Pegg, D. E. (1976). Long-term preservation of cells and tissues: a review. J. Clin. Pathol., 29, 271

    Article  PubMed  CAS  Google Scholar 

  33. Pegg, D.E. (1981). The effect of cell concentration on the recovery of human erythrocytes after freezing and thawing in the presence of glycerol. Cryobiology, 18, 221

    Article  PubMed  CAS  Google Scholar 

  34. Benichou, J., Halgrimson, C.G., Weill III, R., Koep, L.J. and Starzl, T.E. (1977). Canine and human liver preservation for 6–18 hours by cold perfusion. Transplantation, 24, 407

    CAS  Google Scholar 

  35. Calne, R. Y. (1981). Liver. In Karow, A.M., Jr. and Pegg, D.E. (eds.) Organ Preservation for Transplantation. 2nd edn, pp. 617–624. ( New York: Marcel Dekker )

    Google Scholar 

  36. Watson, D.C. (1977). Consistent survival after prolonged donor heart preservation. Transplant Proc., 9, 297

    PubMed  Google Scholar 

  37. Armitage, W.J. and Pegg, D.E. (1978). The influence of gelatin polypeptides, potassium, calcium and osmolality on the hypothermic perfusion of rabbit hearts. Cryobiology, 15, 537

    Article  PubMed  CAS  Google Scholar 

  38. Toledo-Pereyra, L.H., Chee, M., Condie, R.M., Najarian, J.S. and Lillehei, R.C. (1979). Forty-eight hours hypothermic storage of whole canine pancreas allografts. Improved preservation with a colloid hyperosmolar solution. Cryobiology, 16, 221

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 MTP Press Limited

About this chapter

Cite this chapter

Pegg, D.E. (1982). The principles of organ storage procedures. In: Pegg, D.E., Jacobsen, I.A., Halasz, N.A. (eds) Organ Preservation. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-6267-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-6267-8_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-011-6269-2

  • Online ISBN: 978-94-011-6267-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics