Skip to main content

Systems Biology: Towards Realistic and Useful Models of Molecular Networks

  • Chapter
  • First Online:
Nuclear Receptors

Part of the book series: Proteins and Cell Regulation ((PROR,volume 8))

Abstract

Molecular biology is shifting focus from single molecules to networks of molecules. This development has changed our way of doing research and is challenging our thinking about cells. Cells turn out be complicated molecular systems displaying multivariate dynamics that can rarely be understood in terms of single molecules. One way to appreciate this complexity is to make mathematical models of signaling, gene, and metabolic network to assess the systemic consequences of specific molecular perturbations. This chapter gives a brief overview of some of the approach in mathematical modeling of molecular networks. We choose to keep the mathematical detail minimal and highlight a number of concepts and approaches that are emerging in the analysis of molecular networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    from \(1/(k^ + \cdot X \cdot Y)\) with k + as 10–3 pM–1 min–1 and X and Y equal to 0.8 pM

References

  1. Bruggeman, F. J. and Westerhoff, H. V. (2007). The nature of systems biology. Trends Microbiol 15, 45–50.

    Article  CAS  PubMed  Google Scholar 

  2. Ideker, T., Galitski, T., and Hood, L. (2001). A new approach to decoding life: Systems biology. Annu Rev Genomics Hum Genet 2, 343–372.

    Article  CAS  PubMed  Google Scholar 

  3. Westerhoff, H. V. and Palsson, B. O. (2004). The evolution of molecular biology into systems biology. Nat Biotechnol 22, 1249–1252.

    Article  CAS  PubMed  Google Scholar 

  4. Alberghina, L. and Westerhoff, H. V. (Eds.) (2005). Systems biology: Definitions and perspectives (topics in current genetics). Springer-Verlag Berlin and Heidelberg GmbH & Co. KG.

    Google Scholar 

  5. Barabasi, A. L. and Oltvai, Z. N. (2004). Network biology: Understanding the cell’s functional organization. Nat Rev Genet 5, 101–113.

    Article  CAS  PubMed  Google Scholar 

  6. Kitano, H. (2004). Biological robustness. Nat Rev Genet 5, 826–837.

    Article  CAS  PubMed  Google Scholar 

  7. Albert, R. and Barabasi, A. L. (2002). Statistical mechanics of complex networks. Rev Modern Phys 74, 47–97.

    Article  Google Scholar 

  8. Newman, M. E. J. (2003). The structure and function of complex networks. SIAM review 45, 167–256.

    Article  Google Scholar 

  9. Ideker, T., Winslow, L. R., and Lauffenburger, A. D. (2006). Bioengineering and systems biology. Ann Biomed Eng 34, 257–264.

    Article  PubMed  Google Scholar 

  10. Csete, M. E. and Doyle, J. C. (2002). Reverse engineering of biological complexity. Science 295, 1664–1669.

    Article  CAS  PubMed  Google Scholar 

  11. Del Vecchio, D., Ninfa, A. J., and Sontag, E. D. (2008). Modular cell biology: Retroactivity and insulation. Mol Syst Biol 4, 161.

    Article  PubMed  Google Scholar 

  12. Stelling, J., Sauer, U., Szallasi, Z., Doyle, F. J., 3rd, and Doyle, J. (2004). Robustness of cellular functions. Cell 118, 675–685.

    Article  CAS  PubMed  Google Scholar 

  13. Bruggeman, F. J., de Haan, J., Hardin, H., Bouwman, J., Rossell, S., van Eunen, K., Bakker, B. M., and Westerhoff, H. V. (2006). Time-dependent hierarchical regulation analysis: Deciphering cellular adaptation. Syst Biol (Stevenage) 153, 318–322.

    CAS  Google Scholar 

  14. Bruggeman, F. J., Westerhoff, H. V., Hoek, J. B., and Kholodenko, B. N. (2002). Modular response analysis of cellular regulatory networks. J Theor Biol 218, 507–520.

    CAS  PubMed  Google Scholar 

  15. Daran-Lapujade, P., Rossell, S., van Gulik, W. M., Luttik, M. A., de Groot, M. J., Slijper, M., Heck, A. J., Daran, J. M., de Winde, J. H., Westerhoff, H. V., Pronk, J. T., and Bakker, B. M. (2007). The fluxes through glycolytic enzymes in Saccharomyces cerevisiae are predominantly regulated at posttranscriptional levels. Proc Natl Acad Sci U S A 104, 15753–15758.

    Article  CAS  PubMed  Google Scholar 

  16. Hofmeyr, J. H. and Westerhoff, H. V. (2001). Building the cellular puzzle: Control in multi-level reaction networks. J Theor Biol 208, 261–285.

    Article  CAS  PubMed  Google Scholar 

  17. Kahn, D. and Westerhoff, H. V. (1991). Control theory of regulatory cascades. J Theor Biol 153, 255–285.

    Article  CAS  PubMed  Google Scholar 

  18. Kholodenko, B. N., Kiyatkin, A., Bruggeman, F. J., Sontag, E., Westerhoff, H. V., and Hoek, J. B. (2002). Untangling the wires: A strategy to trace functional interactions in signaling and gene networks. Proc Natl Acad Sci USA 99, 12841–12846.

    Article  CAS  PubMed  Google Scholar 

  19. Rossell, S., van der Weijden, C. C., Lindenbergh, A., van Tuijl, A., Francke, C., Bakker, B. M., and Westerhoff, H. V. (2006). Unraveling the complexity of flux regulation: A new method demonstrated for nutrient starvation in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 103, 2166–2171.

    Article  CAS  PubMed  Google Scholar 

  20. Bruggeman, F. J., Snoep, J. L., and Westerhoff, H. V. (2008). Control, responses and modularity of cellular regulatory networks: A control analysis perspective. IET Syst Biol 2, 397.

    Article  CAS  PubMed  Google Scholar 

  21. Price, N. D., Reed, J. L., and Palsson, B. O. (2004). Genome-scale models of microbial cells: Evaluating the consequences of constraints. Nat Rev Microbiol 2, 886–897.

    Article  CAS  PubMed  Google Scholar 

  22. Aldridge, B. B., Burke, J. M., Lauffenburger, D. A., and Sorger, P. K. (2006). Physicochemical modelling of cell signalling pathways. Nat Cell Biol 8, 1195–1203.

    Article  CAS  PubMed  Google Scholar 

  23. Bluthgen, N., Bruggeman, F. J., Legewie, S., Herzel, H., Westerhoff, H. V., and Kholodenko, B. N. (2006). Effects of sequestration on signal transduction cascades. FEBS J 273, 895–906.

    Article  PubMed  Google Scholar 

  24. Hornberg, J. J., Binder, B., Bruggeman, F. J., Schoeberl, B., Heinrich, R., and Westerhoff, H. V. (2005a). Control of MAPK signalling: From complexity to what really matters. Oncogene 24, 5533–5542.

    Article  CAS  PubMed  Google Scholar 

  25. Hornberg, J. J., Bruggeman, F. J., Binder, B., Geest, C. R., de Vaate, A. J., Lankelma, J., Heinrich, R., and Westerhoff, H. V. (2005b). Principles behind the multifarious control of signal transduction. ERK phosphorylation and kinase/phosphatase control. FEBS J 272, 244–258.

    CAS  Google Scholar 

  26. Kholodenko, B. N., Demin, O. V., Moehren, G., and Hoek, J. B. (1999). Quantification of short term signaling by the epidermal growth factor receptor. J Biol Chem 274, 30169–30181.

    Article  CAS  PubMed  Google Scholar 

  27. Schoeberl, B., Gaudet, S., Albeck, J. G., Janes, K., Sorger, P. K., and Lauffenburger, D. A. (2002). The apoptotic decision process in TNF alpha-stimulated HT-29 cells: A combined computational and experimental approach. Molecular Biology of the Cell 13, 11A–11A.

    Google Scholar 

  28. Suenaga, A., Kiyatkin, A. B., Hatakeyama, M., Futatsugi, N., Okimoto, N., Hirano, Y., Narumi, T., Kawai, A., Susukita, R., Koishi, T., Furusawa, H., Yasuoka, K., Takada, N., Ohno, Y., Taiji, M., Ebisuzaki, T., Hoek, J. B., Konagaya, A., and Kholodenko, B. N. (2004). Tyr-317 phosphorylation increases Shc structural rigidity and reduces coupling of domain motions remote from the phosphorylation site as revealed by molecular dynamics simulations. J Biol Chem 279, 4657–4662.

    Article  CAS  PubMed  Google Scholar 

  29. Swameye, I., Muller, T. G., Timmer, J., Sandra, O., and Klingmuller, U. (2003). Identification of nucleocytoplasmic cycling as a remote sensor in cellular signaling by databased modeling. Proc Natl Acad Sci USA 100, 1028–1033.

    Article  CAS  PubMed  Google Scholar 

  30. Raj, A. and van Oudenaarden, A. (2008). Nature, nurture, or chance: Stochastic gene expression and its consequences. Cell 135, 216–226.

    Article  CAS  PubMed  Google Scholar 

  31. Heinrich, R., Rapoport, S. M., and Rapoport, T. A. (1977). Metabolic regulation and mathematical models. Prog Biophys Mol Biol 32, 1–82.

    Article  CAS  PubMed  Google Scholar 

  32. Kholodenko, B. N. (2006). Cell-signalling dynamics in time and space. Nat Rev Mol Cell Biol 7, 165–176.

    Article  CAS  PubMed  Google Scholar 

  33. Szallazi, Z., Stelling, J., and Periwall, V. (2006). System modeling in cellular biology: From concepts to nuts and bolts. The MIT Press, Cambridge, MA.

    Google Scholar 

  34. Tyson, J. J., Chen, K. C., and Novak, B. (2003). Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr Opin Cell Biol 15, 221–231.

    Article  CAS  PubMed  Google Scholar 

  35. von Hippel, P. H. and Berg, O. G. (1989). Facilitated target location in biological systems. J Biol Chem 264, 675–678.

    Google Scholar 

  36. Heinrich, R. and Rapoport, T. A. (1974). A linear steady-state treatment of enzymatic chains. General properties, control and effector strength. Eur J Biochem 42, 89–95.

    Article  CAS  PubMed  Google Scholar 

  37. Kacser, H. and Burns, J. A. (1973). The control of flux. Symp Soc Exp Biol 27, 65–104.

    CAS  PubMed  Google Scholar 

  38. Paulsson, J. (2005). Models of stochastic gene expression. Physics of Life Reviews 2, 157–175.

    Article  Google Scholar 

  39. Savageau, M. A. (1976). Biochemical systems analysis: A study of function and design in molecular biology. Addison-Wesley, New York.

    Google Scholar 

  40. Cornish-Bowden, A. (1995). Fundamentals of enzyme kinetics. Portland Press, London.

    Google Scholar 

  41. Segel, I. H. (1993). Enzyme kinetics: Behavior and analysis of rapid equilibrium and steady-state enzyme systems. John Wiley & Son, Inc., New York.

    Google Scholar 

  42. Westerhoff, H. V. and Van Dam, K. (1987). Thermodynamics and control of biological free-energy transduction. Elsevier Science Publishers B.V. (Biomedical Division), Amsterdam.

    Google Scholar 

  43. Fell, D. A. (1997). Understanding the control of metabolism. Portland Press, London and Miami.

    Google Scholar 

  44. Hofmeyr, J. S. and Cornish-Bowden, A. (2000). Regulating the cellular economy of supply and demand. FEBS Lett 476, 47–51.

    Article  CAS  PubMed  Google Scholar 

  45. Metivier, R., Reid, G., and Gannon, F. (2006). Transcription in four dimensions: Nuclear receptor-directed initiation of gene expression. EMBO Rep 7, 161–167.

    Article  CAS  PubMed  Google Scholar 

  46. Metivier, R., Penot, G., Hubner, M. R., Reid, G., Brand, H., Kos, M., and Gannon, F. (2003). Estrogen receptor-alpha directs ordered, cyclical, and combinatorial recruitment of cofactors on a natural target promoter. Cell 115, 751–763.

    Article  CAS  PubMed  Google Scholar 

  47. Chubb, J. R., Trcek, T., Shenoy, S. M., and Singer, R. H. (2006). Transcriptional pulsing of a developmental gene. Curr Biol 16, 1018–1025.

    Article  CAS  PubMed  Google Scholar 

  48. Elowitz, M. B., Levine, A. J., Siggia, E. D., and Swain, P. S. (2002). Stochastic gene expression in a single cell. Science 297, 1183–1186.

    Article  CAS  PubMed  Google Scholar 

  49. Levsky, J. M., Shenoy, S. M., Pezo, R. C., and Singer, R. H. (2002). Single-cell gene expression profiling. Science 297, 836–840.

    Article  CAS  PubMed  Google Scholar 

  50. Raj, A., Peskin, C. S., Tranchina, D., Vargas, D. Y., and Tyagi, S. (2006). Stochastic mRNA synthesis in mammalian cells. PLoS Biol 4, e309.

    Article  PubMed  Google Scholar 

  51. Rosenfeld, N., Young, J. W., Alon, U., Swain, P. S., and Elowitz, M. B. (2005). Gene regulation at the single-cell level. Science 307, 1962–1965.

    Article  CAS  PubMed  Google Scholar 

  52. Swain, P. S., Elowitz, M. B., and Siggia, E. D. (2002). Intrinsic and extrinsic contributions to stochasticity in gene expression. Proc Natl Acad Sci USA 99, 12795–12800.

    Article  CAS  PubMed  Google Scholar 

  53. Golding, I., Paulsson, J., Zawilski, S. M., and Cox, E. C. (2005). Real-time kinetics of gene activity in individual bacteria. Cell 123, 1025–1036.

    Article  CAS  PubMed  Google Scholar 

  54. Rando, O. J. and Paulsson, J. (2006). Noisy silencing of chromatin. Dev Cell 11, 134–136.

    Article  CAS  PubMed  Google Scholar 

  55. Kaufmann, B. B. and van Oudenaarden, A. (2007). Stochastic gene expression: From single molecules to the proteome. Curr Opin Genet Dev 17, 107–112.

    Article  CAS  PubMed  Google Scholar 

  56. Guarnieri, D. J. and DiLeone, R. J. (2008). MicroRNAs: A new class of gene regulators. Ann Med 40, 197–208.

    Article  CAS  PubMed  Google Scholar 

  57. Makeyev, E. V. and Maniatis, T. (2008). Multilevel regulation of gene expression by microRNAs. Science 319, 1789–90.

    Article  CAS  PubMed  Google Scholar 

  58. Selbach, M., Schwanhausser, B., Thierfelder, N., Fang, Z., Khanin, R., and Rajewsky, N. (2008). Widespread changes in protein synthesis induced by microRNAs. Nature 455, 58–63.

    Article  CAS  PubMed  Google Scholar 

  59. Kumar, S., Saradhi, M., Chaturvedi, N. K., and Tyagi, R. K. (2006). Intracellular localization and nucleocytoplasmic trafficking of steroid receptors: An overview. Mol Cell Endocrinol 246, 147–156.

    Article  CAS  PubMed  Google Scholar 

  60. Liu, J. and DeFranco, D. B. (2000). Protracted nuclear export of glucocorticoid receptor limits its turnover and does not require the exportin 1/CRM1-directed nuclear export pathway. Mol Endocrinol 14, 40–51.

    Article  PubMed  Google Scholar 

  61. Nicolas, F. J., De Bosscher, K., Schmierer, B., and Hill, C. S. (2004). Analysis of Smad nucleocytoplasmic shuttling in living cells. J Cell Sci 117, 4113–4125.

    Article  CAS  PubMed  Google Scholar 

  62. Schmierer, B. and Hill, C. S. (2005). Kinetic analysis of Smad nucleocytoplasmic shuttling reveals a mechanism for transforming growth factor beta-dependent nuclear accumulation of Smads. Mol Cell Biol 25, 9845–9858.

    Article  CAS  PubMed  Google Scholar 

  63. Stewart, M. (2007). Molecular mechanism of the nuclear protein import cycle. Nat Rev Mol Cell Biol 8, 195–208.

    Article  CAS  PubMed  Google Scholar 

  64. Alon, U. (2007). Network motifs: Theory and experimental approaches. Nat Rev Genet 8, 450–461.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Bruggeman, F., Kolodkin, A., Rybakova, K., MonÉ, M., Westerhoff, H. (2010). Systems Biology: Towards Realistic and Useful Models of Molecular Networks. In: Bunce, C., Campbell, M. (eds) Nuclear Receptors. Proteins and Cell Regulation, vol 8. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3303-1_18

Download citation

Publish with us

Policies and ethics