Skip to main content

The Causal Interpretation of Bayesian Networks

  • Chapter
Innovations in Bayesian Networks

Part of the book series: Studies in Computational Intelligence ((SCI,volume 156))

Abstract

The common interpretation of Bayesian networks is that they are vehicles for representing probability distributions, in a graphical form supportive of human understanding and with computational mechanisms supportive of probabilistic reasoning (updating). But the interpretation of Bayesian networks assumed by causal discovery algorithms is causal: the links in the graphs specifically represent direct causal connections between variables. However, there is some tension between these two interpretations. The philosophy of probabilistic causation posits a particular connection between the two, namely that causal relations of certain kinds give rise to probabilistic relations of certain kinds. Causal discovery algorithms take advantage of this kind of connection by ruling out some Bayesian networks given observational data not supported by the posited probability-causality relation. But the discovered (remaining) Bayesian networks are then specifically causal, and not simply arbitrary representations of probability.

There are multiple contentious issues underlying any causal interpretation of Bayesian networks. We will address the following questions:

  • Since Bayesian net construction rules allow the construction of multiple distinct networks to represent the very same probability distribution, how can we come to prefer any specific one as “the” causal network?

  • Since Bayesian nets within a Verma-Pearl pattern are strongly indistinguishable, how can causal discovery ever come to select exactly one network as “the” causal network?

  • Causal discovery assumes faithfulness (that d-connections in the model are accompanied by probabilistic dependency in the system modeled). However, some physical systems cannot be modeled faithfully under a causal interpretation. How can causal discovery cope with that?

Here we introduce a causal interpretation of Bayesian networks by way of answering these questions and then apply this interpretation to answering further questions about causal power, explanation and responsibility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bouissou, M., Thuy, N.: Decision making based on expert assessments: Use of belief networks to take into account uncertainty, bias, and weak signals. In: Decision-making aid and control of the risks: Lambda-Mu 13/ESREL 2002 Conference, Lyon, France (2002)

    Google Scholar 

  2. Bovens, L., Hartmann, S.: Bayesian networks and the problem of unreliable instruments. Philosophy of Science 69, 29–72 (2002)

    Article  MathSciNet  Google Scholar 

  3. Cain, J.: Planning improvements in natural resources management. Technical report, Centre for Ecology and Hydrology (2001)

    Google Scholar 

  4. Cartwright, N.: What is wrong with Bayes nets? The Monist 84, 242–264 (2001)

    MathSciNet  Google Scholar 

  5. Cartwright, N.: Nature’s Capacities and their Measurement. Clarendon Press, Oxford (1989)

    Google Scholar 

  6. Cheng, P.W.: From covariation to causation: A causal power theory. Psychological Review 104, 367–405 (1997)

    Article  Google Scholar 

  7. Chickering, D.M.: A tranformational characterization of equivalent Bayesian network structures. In: Besnard, P., Hanks, S. (eds.) Proc. of the 11th Conf. on Uncertainty in AI, San Francisco, pp. 87–98 (1995)

    Google Scholar 

  8. Max Chickering, D.: Optimal structure identification with greedy search. Machine Leaning Research 3, 507–559 (2002)

    Article  Google Scholar 

  9. Collins, J.: Preemptive prevention. Journal of Philosophy 97, 223–234 (2000)

    Article  Google Scholar 

  10. Cooper, G.F.: The computational complexity of probabilistic inference using Bayesian belief networks. Artificial Intelligence 42, 393–405 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  11. Cooper, G.F., Herskovits, E.: A Bayesian method for constructing Bayesian belief networks from databases. In: D’Ambrosio, S., Bonissone (eds.) uai1991, pp 86–94 (1991)

    Google Scholar 

  12. Dowe, P.: Physical Causation. Cambridge University, New York (2000)

    Google Scholar 

  13. Fisher, R.A.: Letter. British Medical Journal, 297–298 (August 3, 1957)

    Google Scholar 

  14. Glymour, C.: The Mind’s Arrows: Bayes Nets and Graphical Causal Models in Psychology. MIT, Cambridge (2001)

    Google Scholar 

  15. Glymour, C., Cheng, P.W.: Causal mechanism and probability: A normative approach. In: Oaksford, M., Chater, N. (eds.) Rational models of cognition, Oxford (1998)

    Google Scholar 

  16. Hall, N.: Two concepts of causation. In: Collins, J., Hall, N., Paul, L.A. (eds.) Causation and Counterfactuals, pp. 225–276. MIT Press, Cambridge (2004)

    Google Scholar 

  17. Halpern, J.Y., Pearl, J.: Causes and explanations, part I.. British Journal for the Philosophy of Science 56, 843–887 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  18. Halpern, J.Y., Pearl J.: Causes and explanations, part II. British Journal for the Philosophy of Science 56, 889–911 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  19. Handfield, T., Oppy, G., Twardy, C., Korb, K.B.: Probabilistic process causality (2005); Under Submission

    Google Scholar 

  20. Hausman, D.M.: Probabilistic causality and causal generalizations. In: Eells, E., Fetzer, J.H. (eds.) The Place of Probability in Science, Open Court (2005)

    Google Scholar 

  21. Heckerman, D., Geiger, D., Chickering, D.M.: Learning Bayesian networks: the combination of knowledge and statistical data. In: de Mantras, L., Poole, D. (eds.) Proc. of the 10th Conf. on Uncertainty in AI, San Francisco, pp. 293–301 (1994)

    Google Scholar 

  22. Hiddleston, E.: Causal powers. British Journal for the Philosophy of Science 56, 27–59 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  23. Hitchcock, C.R.: The intransivity of causation revealed in equations and graphs. Journal of Philosophy 158(6), 273–299 (2001)

    Article  MathSciNet  Google Scholar 

  24. Hitchcock, C.R.: Routes, processes and chance-lowering causes. In: Dowe, P., Noordhof (eds.) Cause and Chance, Routledge, pp. 138–151 (2004)

    Google Scholar 

  25. Hope, L.R., Korb, K.B.: An information-theoretic causal power theory. In: Proc. of the 18th Australian Joint Conference on AI, Sydney, NSW, pp. 805–811. Springer, Heidelberg (2005)

    Google Scholar 

  26. Kitcher, P.: Explanatory unification and the causal structure of the world. In: Kitcher, P., Salmon, W.C. (eds.) Minnesota Studies in the Philosophy of Science, Univ. of Minnesota, vol. XIII, pp. 410–505 (1989)

    Google Scholar 

  27. Korb, K.B., Hope, L.R., Nicholson, A.E., Axnick, K.: Varieties of causal intervention. In: Pacific Rim International Conference on AI, pp. 322–231 (2004)

    Google Scholar 

  28. Korb, K.B., Nicholson, A.E.: Bayesian Artificial Intelligence, CRC/Chapman and Hall, Boca Raton, F1 (2004)

    MATH  Google Scholar 

  29. Korb, K.B., Nyberg, E.: The power of intervention. Minds and Machines 16, 289–302 (2006)

    Article  Google Scholar 

  30. Korb, K.B., Twardy, C.R., Handfield, T., Oppy, G.: Causal reasoning with causal models. Technical Report 2005/183, School of Computer Science and Software Engineering, Monash University (2005)

    Google Scholar 

  31. Lewis, D.: Causation. Journal of Philosophy 70, 556–567 (1973)

    Article  Google Scholar 

  32. Lewis, D.: Philosophical Papers, vol. II. Oxford Univ., Oxford (1986)

    Google Scholar 

  33. Lewis, D.: Void and object. In: Collins, J., Hall, N., Paul, L.A. (eds.) Causation and Counterfactuals, pp. 277–290. MIT Press, Cambridge (2004)

    Google Scholar 

  34. Marcot, B.G., Holthausen, R.S., Raphael, M.G., Rowland, M.M., Wisdom, M.J.: Using Bayesian belief networks to evaluate fish and wildlife population viability under land management alternatives from an environmental impact statement. Forest Ecology and Management 153, 29–42 (2001)

    Article  Google Scholar 

  35. Menzies, P.: Difference making in context. In: Collins, J., Hall, N., Paul, L. (eds.) Counterfactuals and Causation, pp. 139–180. MIT Press, Cambridge (2004)

    Google Scholar 

  36. Neapolitan, R.E.: Learning Bayesian Networks. Prentice Hall, Englewood Cliffs (2003)

    Google Scholar 

  37. Novick, L.R., Cheng, P.W.: Assessing interactive causal influence. Psychological Review 111, 455–485 (2004)

    Article  Google Scholar 

  38. Nyberg, E.P., Korb, K.B.: Informative interventions. Technical Report 2006/204, School of Information Technology, Monash University (2006)

    Google Scholar 

  39. Pearl, J.: Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, San Mateo (1988)

    Google Scholar 

  40. Pearl, J.: Causality: Models, reasoning and inference, Cambridge (2000)

    Google Scholar 

  41. Popper, K.R.: The Logic of Scientific Discovery. Basic Books, New York (1959); Translation, with new appendices, of Logik der Forschung Vienna (1934)

    MATH  Google Scholar 

  42. Popper, K.R.: Objective Knowledge: an Evolutionary Approach. Oxford University, Oxford (1972)

    Google Scholar 

  43. Reichenbach, H.: The Direction of Time. Univ of California, Berkeley (1956)

    Google Scholar 

  44. Rosen, D.: In defense of a probabilistic theory of causality. Philosophy of Science 45, 604–613 (1978)

    Article  Google Scholar 

  45. Salmon, W.C.: Scientific Explanation and the Causal Structure of the World, Princeton (1984)

    Google Scholar 

  46. Salmon, W.: Probabilistic causality. Pacific Philosophical Quarterly, 50–74 (1980)

    Google Scholar 

  47. Spirtes, P., Glymour, C., Scheines, R.: Causation, Prediction and Search. Lecture Notes in Statistics, vol. 81. Springer, Heidelberg (1993)

    MATH  Google Scholar 

  48. Spirtes, P., Glymour, C., Scheines, R.: Causation, Prediction and Search, 2nd edn. MIT Press, Cambridge (2000)

    Google Scholar 

  49. Steel, D.: Homogeneity, selection and the faithfulness condition. Minds and Machines 16, 303–317 (2006)

    Article  MathSciNet  Google Scholar 

  50. Suppes, P.: A Probabilistic Theory of Causality, North Holland, Amsterdam (1970)

    Google Scholar 

  51. Twardy, C.R., Nicholson, A.E., Korb, K.B.: Knowledge engineering cardiovascular Bayesian networks from the literature. Technical Report 2005/170, Clayton School of IT, Monash University (2005)

    Google Scholar 

  52. Twardy, C., Korb, K.B.: A criterion of probabilistic causation. Philosophy of Science 71, 241–262 (2004)

    Article  MathSciNet  Google Scholar 

  53. Verma, T.S., Pearl, J.: Equivalence and synthesis of causal models. In: D’Ambrosio, S., Bonissone (eds.) Proc. of the Sixth Conference on Uncertainty in AI, pp. 255–268 (1991)

    Google Scholar 

  54. Wallace, C.S., Korb, K.B.: Learning linear causal models by MML sampling. In: Gammerman, A. (ed.) Causal Models and Intelligent Data Management. Springer, Heidelberg (1999)

    Google Scholar 

  55. Witten, I.H., Frank, E.: Data mining: Practical machine learning tools and techniques, 2nd edn. Morgan Kaufman, San Francisco (2005)

    MATH  Google Scholar 

  56. Woodward, J.: Making Things Happen. Oxford Univ., Oxford (2003)

    Google Scholar 

  57. Wright, S.: The method of path coefficients. Annals of Mathematical Statistics 5(3), 161–215 (1934)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Korb, K.B., Nicholson, A.E. (2008). The Causal Interpretation of Bayesian Networks. In: Holmes, D.E., Jain, L.C. (eds) Innovations in Bayesian Networks. Studies in Computational Intelligence, vol 156. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85066-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85066-3_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85065-6

  • Online ISBN: 978-3-540-85066-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics