Skip to main content

Use of Explanation Trees to Describe the State Space of a Probabilistic-Based Abduction Problem

  • Chapter
Innovations in Bayesian Networks

Part of the book series: Studies in Computational Intelligence ((SCI,volume 156))

  • 4638 Accesses

Abstract

This chapter presents a new approach to the problem of obtaining the most probable explanations given a set of observations in a Bayesian network. The method provides a set of possibilities ranked by their probabilities. The main novelties are that the level of detail of each one of the explanations is not uniform (with the idea of being as simple as possible in each case), the explanations are mutually exclusive, and the number of required explanations is not fixed (it depends on the particular case we are solving). Our goals are achieved by means of the construction of the so called explanation tree which can have asymmetric branching and that will determine the different possibilities. This chapter describes the procedure for its computation based on information theory criteria and shows its behaviour in some examples.

To test the procedure we have used a couple of examples that can be intuitively interpreted and understood. Moreover, we have carried out a set of experiments to make a comparison with other existing abductive techniques that were designed with goals similar to those we pursue.

This chapter is an extended version of [27].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pearl, J.: Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, San Mateo (1988)

    Google Scholar 

  2. Castillo, E., Gutiérrez, J.M., Hadi, A.S.: Expert Systems and Probabilistic Network Models. Springer, Heidelberg (1997)

    Google Scholar 

  3. Jensen, F.V.: Bayesian Networks and Decision Graphs. Springer, Heidelberg (2001)

    MATH  Google Scholar 

  4. Lacave, C., Díez, F.J.: A review of explanation methods for Bayesian networks. The Knowledge Engineering Review 17, 107–127 (2002)

    Article  Google Scholar 

  5. Gámez, J.A.: Abductive inference in Bayesian networks: A review. In: Gámez, J.A., Moral, S., Salmerón, A. (eds.) Advances in Bayesian Networks, pp. 101–120. Springer, Heidelberg (2004)

    Google Scholar 

  6. Reiter, R.: A theory of diagnosis from first principles. Artificial Intelligence 32(1), 57–95 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  7. Peng, Y., Reggia, J.A.: A probabilistic causal model for diagnostic problem solving. IEEE Transactions on Systems, Man, and Cybernetics 17(2), 146–162 (1987)

    Article  MATH  Google Scholar 

  8. Shimony, S.E.: Finding MAPs for belief networks is NP-hard. Artificial Intelligence 68, 399–410 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dawid, A.P.: Applications of a general propagation algorithm for probabilistic expert systems. Statistics and Computing 2, 25–36 (1992)

    Article  Google Scholar 

  10. Nilsson, D.: An efficient algorithm for finding the M most probable configurations in Bayesian networks. Statistics and Computing, 8, 159–173 (1992)

    Article  Google Scholar 

  11. Li, Z., D’Ambrosio, B.: An efficient approach for finding the MPE in belief networks. Proceedings of the 9th Conference on Uncertainty in Artificial Intelligence, pp. 342–349. Morgan Kaufmann, San Francisco (1993)

    Google Scholar 

  12. Seroussi, B., Goldmard, J.L.: An algorithm directly finding the k most probable configurations in Bayesian networks. International Journal of Approximate Reasoning 11, 205–233 (1994)

    Article  Google Scholar 

  13. Gelsema, E.S.: Abductive reasoning in Bayesian belief networks using a genetic algorithm. Pattern Recognition Letters 16, 865–871 (1995)

    Article  Google Scholar 

  14. Nilsson, D.: An algorithm for finding the most probable configurations of discrete variables that are specified in probabilistic expert systems. MSc. Thesis, University of Copenhagen, Copenhagen, Denmark (1994)

    Google Scholar 

  15. Shimony, S.E.: Explanation, irrelevance and statistical independence. In: Proc. of the National Conf. in Artificial Intelligence, pp. 482–487 (1991)

    Google Scholar 

  16. Neapolitan, R.E.: Probabilistic Reasoning in Expert Systems. Theory and Algorithms. Wiley Interscience, New York (1990)

    Google Scholar 

  17. Park, J.D., Darwiche, A.: Complexity results and approximation strategies for MAP explanations. Journal of Artificial Intelligence Research 21, 101–133 (2004)

    MATH  MathSciNet  Google Scholar 

  18. de Campos, L.M., Gámez, J.A., Moral, S.: On the problem of performing exact partial abductive inference in Bayesian belief networks using junction trees. In: Bouchon-Meunier, B., Gutierrez, J., Magdalena, L., Yager, R.R. (eds.) Technologies for Constructing Intelligent Systems 2: Tools, pp. 289–302. Springer, Heidelberg (2002)

    Google Scholar 

  19. Park, J.D., Darwiche, A.: Solving MAP exactly using systematic search. In: Proceedings of the 19th Conference on Uncertainty in Artificial Intelligene (UAI 2003), pp. 459–468 (2003)

    Google Scholar 

  20. Salmerón, A., Cano, A., Moral, S.: Importance sampling in Bayesian networks using probability trees. Computational Statistics and Data Analysis 34, 387–413 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  21. de Campos, L.M., Gámez, J.A., Moral, S.: Partial abductive inference in Bayesian networks by using probability trees. In: Camp, O., Filipe, J., Hammoudi, S., Piattini, M. (eds.) Enterprise Information Systems, vol. V, pp. 146–154. Kluwer Academic Publishers, Dordrecht (2004)

    Google Scholar 

  22. Gámez, J.A.: Inferencia abductiva en redes causales (Abductive inference in casual networks). Doctoral thesis, Dpto. de Ciencias de la Computación e I.A. Universidad de Granada (June 1998)

    Google Scholar 

  23. Chajewska, U., Halpern, J.Y.: Defining explanation in probabilistic systems. In: Proc. of 13th Conf. on Uncertainty in Artificial Intelligence (UAI 1997), pp. 62–71 (1997)

    Google Scholar 

  24. Shimony, S.E.: The role of relevance in explanation I: Irrelevance as statistical independence. International Journal of Approximate Reasoning 8, 281–324 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  25. Henrion, M., Druzdzel, M.J.: Qualitative propagation and scenario-based schemes for explaining probabilistic reasoning. In: Bonissone, P.P., Henrion, M., Kanal, L.N., Lemmer, J.F. (eds.) Uncertainty in Artificial Intelligence, vol. 6, pp. 17–32. Elsevier Science, Amsterdam (1991)

    Google Scholar 

  26. de Campos, L.M., Gámez, J.A., Moral, S.: Simplifying explanations in Bayesian belief networks. International Journal of Uncertainty, Fuzziness and Knowledge-based Systems 9, 461–489 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  27. Flores, M.J., Gámez, J.A., Moral, S.: Abductive inference in Bayesian networks: finding a partition of the explanation space. In: Godo, L. (ed.) ECSQARU 2005. LNCS (LNAI), vo. 3571, pp. 63–75. Springer, Heidelberg (2005)

    Google Scholar 

  28. Shenoy, P.P.: Binary join trees for computing marginals in the Shenoy-Shafer architecture. International Journal of Approximate Reasoning 17 (2–3), 239–263 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  29. Dechter, R.: Bucket elimination: A unifying framework for probabilistic inference. In: Proceedings of the Twelth Conference on Uncertainty in Artificial Intelligence (UAI 1996), pp. 211–219 (1996)

    Google Scholar 

  30. deKleer, J., Williams, B.C.: Diagnosing multiple faults. Artificial Intelligence 32 (1), 97–130 (1987)

    Article  Google Scholar 

  31. Consortium, E.: Elvira: An Environment for Probabilistic Graphical Models. In: Gámez, J.A., Salmerón, A. (eds.) Proceedings of the 1st European Workshop on Probabilistic Graphical Models, pp. 222–230 (2002)

    Google Scholar 

  32. Flores, M.J., Gámez, J.A., Moral, S.: The Independency tree model: a new approach for clustering and factorisation. In: Proceedings of the Third European Workshop on Probabilistic Graphical Models, PGM 2006, pp. 83–90 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Flores, M.J., Gámez, J.A., Moral, S. (2008). Use of Explanation Trees to Describe the State Space of a Probabilistic-Based Abduction Problem. In: Holmes, D.E., Jain, L.C. (eds) Innovations in Bayesian Networks. Studies in Computational Intelligence, vol 156. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85066-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85066-3_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85065-6

  • Online ISBN: 978-3-540-85066-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics