Skip to main content

Gene Therapy Strategies to Block HIV-1 Replication by RNA Interference

  • Chapter
  • First Online:
Gene Therapy for HIV and Chronic Infections

Part of the book series: Advances in Experimental Medicine and Biology ((ASGCT,volume 848))

Abstract

The cellular mechanism of RNA interference (RNAi) plays an antiviral role in many organisms and can be used for the development of therapeutic strategies against viral pathogens. Persistent infections like the one caused by the human immunodeficiency virus type 1 (HIV-1) likely require a durable gene therapy approach. The continuous expression of the inhibitory RNA molecules in T cells is needed to effectively block HIV-1 replication. We discuss here several issues, ranging from the choice of RNAi inhibitor and vector system, finding the best target in the HIV-1 RNA genome, alternatively by targeting host mRNAs that encode important viral cofactors, to the setup of appropriate preclinical test systems. Finally, we briefly discuss the relevance of this topic for other viral pathogens that cause a chronic infection in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ambros V. The functions of animal microRNAs. Nature. 2004;431(7006):350–5.

    CAS  PubMed  Google Scholar 

  2. Ambros V, Lee RC, Lavanway A, Williams PT, Jewell D. MicroRNAs and other tiny endogenous RNAs in C. elegans. Curr Biol. 2003;13(10):807–18.

    CAS  PubMed  Google Scholar 

  3. Reinhart BJ, Bartel DP. Small RNAs correspond to centromere heterochromatic repeats. Science. 2002;297(5588):1831.

    CAS  PubMed  Google Scholar 

  4. Aravin AA, Hannon GJ, Brennecke J. The Piwi-piRNA pathway provides an adaptive defense in the transposon arms race. Science. 2007;318(5851):761–4.

    CAS  PubMed  Google Scholar 

  5. Kim VN, Han J, Siomi MC. Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol. 2009;10(2):126–39.

    CAS  PubMed  Google Scholar 

  6. Lau NC. Small RNAs in the animal gonad: guarding genomes and guiding development. Int J Biochem Cell Biol. 2010;42(8):1334–47.

    PubMed Central  CAS  PubMed  Google Scholar 

  7. Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, et al. Combinatorial microRNA target predictions. Nat Genet. 2005;37(5):495–500.

    CAS  PubMed  Google Scholar 

  8. Brummelkamp TR, Bernards R, Agami R. A system for stable expression of short interfering RNAs in mammalian cells. Science. 2002;296(5567):550–3.

    CAS  PubMed  Google Scholar 

  9. Paddison PJ, Caudy AA, Bernstein E, Hannon GJ, Conklin DS. Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev. 2002;16(8):948–58.

    PubMed Central  CAS  PubMed  Google Scholar 

  10. Siolas D, Lerner C, Burchard J, Ge W, Linsley PS, Paddison PJ, et al. Synthetic shRNAs as potent RNAi triggers. Nat Biotechnol. 2005;23(2):227–31.

    CAS  PubMed  Google Scholar 

  11. Auyeung VC, Ulitsky I, McGeary SE, Bartel DP. Beyond secondary structure: primary-sequence determinants license pri-miRNA hairpins for processing. Cell. 2013;152(4):844–58.

    PubMed Central  CAS  PubMed  Google Scholar 

  12. Han J, Lee Y, Yeom KH, Nam JW, Heo I, Rhee JK, et al. Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell. 2006;125(5):887–901.

    CAS  PubMed  Google Scholar 

  13. Chendrimada TP, Gregory RI, Kumaraswamy E, Norman J, Cooch N, Nishikura K, et al. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature. 2005;436(7051):740–4.

    PubMed Central  CAS  PubMed  Google Scholar 

  14. Li Y, Lu J, Han Y, Fan X, Ding SW. RNA interference functions as an antiviral immunity mechanism in mammals. Science. 2013;342(6155):231–4.

    CAS  PubMed  Google Scholar 

  15. Maillard PV, Ciaudo C, Marchais A, Li Y, Jay F, Ding SW, et al. Antiviral RNA interference in mammalian cells. Science. 2013;342(6155):235–8.

    CAS  PubMed  Google Scholar 

  16. Knoepfel SA, Centlivre M, Liu YP, Boutimah F, Berkhout B. Selection of RNAi-based inhibitors for anti-HIV gene therapy. World J Virol. 2012;1(3):79–90.

    PubMed Central  PubMed  Google Scholar 

  17. Liu YP, Westerink JT, Ter Brake O, Berkhout B. RNAi-inducing lentiviral vectors for anti-HIV-1 gene therapy. Methods Mol Biol. 2011;721:293–311.

    CAS  PubMed  Google Scholar 

  18. Westerhout EM, Ter Brake O, Berkhout B. The virion-associated incoming HIV-1 RNA genome is not targeted by RNA interference. Retrovirology. 2006;3:57–65.

    PubMed Central  PubMed  Google Scholar 

  19. Hawkins PG, Santoso S, Adams C, Anest V, Morris KV. Promoter targeted small RNAs induce long-term transcriptional gene silencing in human cells. Nucleic Acids Res. 2009;37(9):2984–95.

    PubMed Central  CAS  PubMed  Google Scholar 

  20. Suzuki K, Shijuuku T, Fukamachi T, Zaunders J, Guillemin G, Cooper D, et al. Prolonged transcriptional silencing and CpG methylation induced by siRNAs targeted to the HIV-1 promoter region. J RNAi Gene Silencing. 2005;1(2):66–78.

    PubMed Central  CAS  PubMed  Google Scholar 

  21. Ter Brake O, von Eije KJ, Berkhout B. Probing the sequence space available for HIV-1 evolution. AIDS. 2008;22(14):1875–7.

    CAS  PubMed  Google Scholar 

  22. Ter Brake O, Berkhout B. Development of an RNAi-based gene therapy against HIV-1. In: Kurreck J, editor. Therapeutic oligonucleotides. Cambridge: RSC Publishing; 2008. p. 296–311.

    Google Scholar 

  23. Berkhout B. Structure and function of the human immunodeficiency virus leader RNA. Prog Nucleic Acid Res Mol Biol. 1996;54:1–34.

    CAS  PubMed  Google Scholar 

  24. Low JT, Knoepfel SA, Watts JM, ter Brake O, Berkhout B, Weeks KM. SHAPE-directed discovery of potent shRNA inhibitors of HIV-1. Mol Ther. 2012;20:820–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  25. Westerhout EM, Berkhout B. A systematic analysis of the effect of target RNA structure on RNA interference. Nucleic Acids Res. 2007;35(13):4322–30.

    PubMed Central  CAS  PubMed  Google Scholar 

  26. Westerhout EM, Ooms M, Vink M, Das AT, Berkhout B. HIV-1 can escape from RNA interference by evolving an alternative structure in its RNA genome. Nucleic Acids Res. 2005;33(2):796–804.

    PubMed Central  CAS  PubMed  Google Scholar 

  27. Sedaghat AR, Siliciano RF, Wilke CO. Low-level HIV-1 replication and the dynamics of the resting CD4+ T cell reservoir for HIV-1 in the setting of HAART. BMC Infect Dis. 2008;8(1):2.

    PubMed Central  PubMed  Google Scholar 

  28. Bennasser Y, Le SY, Benkirane M, Jeang KT. Evidence that HIV-1 encodes an siRNA and a suppressor of RNA silencing. Immunity. 2005;22(5):607–19.

    CAS  PubMed  Google Scholar 

  29. Schnettler E, de Vries W, Hemmes H, Haasnoot J, Kormelink R, Goldbach R, et al. The NS3 protein of rice hoja blanca virus complements the RNAi suppressor function of HIV-1 Tat. EMBO Rep. 2009;10(3):258–63.

    PubMed Central  CAS  PubMed  Google Scholar 

  30. Ter Brake O, Konstantinova P, Ceylan M, Berkhout B. Silencing of HIV-1 with RNA interference: a multiple shRNA approach. Mol Ther. 2006;14(6):883–92.

    CAS  PubMed  Google Scholar 

  31. Das AT, Brummelkamp TR, Westerhout EM, Vink M, Madiredjo M, Bernards R, et al. Human immunodeficiency virus type 1 escapes from RNA interference-mediated inhibition. J Virol. 2004;78(5):2601–5.

    PubMed Central  CAS  PubMed  Google Scholar 

  32. von Eije KJ, Ter Brake O, Berkhout B. Stringent testing identifies highly potent and escape-proof anti-HIV short hairpin RNAs. J Gene Med. 2009;11(6):459–67.

    Google Scholar 

  33. Brown KM, Chu CY, Rana TM. Target accessibility dictates the potency of human RISC. Nat Struct Mol Biol. 2005;12(5):469–70.

    CAS  PubMed  Google Scholar 

  34. Schubert S, Grunweller A, Erdmann VA, Kurreck J. Local RNA target structure influences siRNA efficacy: systematic analysis of intentionally designed binding regions. J Mol Biol. 2005;348(4):883–93.

    CAS  PubMed  Google Scholar 

  35. Tafer H, Ameres SL, Obernosterer G, Gebeshuber CA, Schroeder R, Martinez J, et al. The impact of target site accessibility on the design of effective siRNAs. Nat Biotech. 2008;26(5):578–83.

    CAS  Google Scholar 

  36. Yoshinari K, Miyagishi M, Taira K. Effects on RNAi of the tight structure, sequence and position of the targeted region. Nucleic Acids Res. 2004;32(2):691–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  37. Shao Y, Chan CY, Maliyekkel A, Lawrence CE, Roninson IB, Ding Y. Effect of target secondary structure on RNAi efficiency. RNA. 2007;13(10):1631–40.

    PubMed Central  CAS  PubMed  Google Scholar 

  38. Brass AL, Dykxhoorn DM, Benita Y, Yan N, Engelman A, Xavier RJ, et al. Identification of host proteins required for HIV infection through a functional genomic screen. Science. 2008;319(5865):921–6.

    CAS  PubMed  Google Scholar 

  39. Bushman FD, Malani N, Fernandes J, D’Orso I, Cagney G, Diamond TL, et al. Host cell factors in HIV replication: meta-analysis of genome-wide studies. PLoS Pathog. 2009;5(5):e1000437.

    PubMed Central  PubMed  Google Scholar 

  40. Eekels JJ, Berkhout B. Toward a durable treatment of HIV-1 infection using RNA interference. Prog Mol Biol Transl Sci. 2011;102:141–63.

    CAS  PubMed  Google Scholar 

  41. Eekels JJ, Geerts D, Jeeninga RE, Berkhout B. Long-term inhibition of HIV-1 replication with RNA interference against cellular co-factors. Antiviral Res. 2011;89(1):43–53.

    CAS  PubMed  Google Scholar 

  42. Liu R, Paxton WA, Choe S, Ceradini D, Martin SR, Horuk R, et al. Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell. 1996;86(3):367–77.

    CAS  PubMed  Google Scholar 

  43. Allers K, Hutter G, Hofmann J, Loddenkemper C, Rieger K, Thiel E, et al. Evidence for the cure of HIV infection by CCR5-delta32/delta32 stem cell transplantation. Blood. 2010;117:2791–9.

    PubMed  Google Scholar 

  44. Hutter G, Nowak D, Mossner M, Ganepola S, Mussig A, Allers K, et al. Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation. N Engl J Med. 2009;360(7):692–8.

    PubMed  Google Scholar 

  45. Li L, Krymskaya L, Wang J, Henley J, Rao A, Cao LF, et al. Genomic editing of the HIV-1 coreceptor CCR5 in adult hematopoietic stem and progenitor cells using zinc finger nucleases. Mol Ther. 2013;21(6):1259–69.

    PubMed Central  CAS  PubMed  Google Scholar 

  46. Voit RA, McMahon MA, Sawyer SL, Porteus MH. Generation of an HIV resistant T-cell line by targeted “stacking” of restriction factors. Mol Ther. 2013;21(4):786–95.

    PubMed Central  CAS  PubMed  Google Scholar 

  47. Nedellec R, Coetzer M, Lederman MM, Offord RE, Hartley O, Mosier DE. Resistance to the CCR5 inhibitor 5P12-RANTES requires a difficult evolution from CCR5 to CXCR4 coreceptor use. PLoS One. 2011;6(7):e22020.

    PubMed Central  CAS  PubMed  Google Scholar 

  48. von Eije KJ, Ter Brake O, Berkhout B. Human immunodeficiency virus type 1 escape is restricted when conserved genome sequences are targeted by RNA interference. J Virol. 2008;82(6):2895–903.

    Google Scholar 

  49. DiGiusto DL, Krishnan A, Li L, Li H, Li S, Rao A, et al. RNA-based gene therapy for HIV with lentiviral vector-modified CD34(+) cells in patients undergoing transplantation for AIDS-related lymphoma. Sci Transl Med. 2010;2(36):36ra43.

    PubMed Central  PubMed  Google Scholar 

  50. Ter Brake O, 't Hooft K, Liu YP, Centlivre M, von Eije KJ, Berkhout B. Lentiviral vector design for multiple shRNA expression and durable HIV-1 inhibition. Mol Ther. 2008;16(3):557–64.

    CAS  PubMed  Google Scholar 

  51. Saayman S, Arbuthnot P, Weinberg MS. Deriving four functional anti-HIV siRNAs from a single Pol III-generated transcript comprising two adjacent long hairpin RNA precursors. Nucleic Acids Res. 2010;38(19):6652–63.

    PubMed Central  CAS  PubMed  Google Scholar 

  52. Saayman S, Barichievy S, Capovilla A, Morris KV, Arbuthnot P, Weinberg MS. The efficacy of generating three independent anti-HIV-1 siRNAs from a single U6 RNA Pol III-expressed long hairpin RNA. PLoS One. 2008;3(7):e2602.

    PubMed Central  PubMed  Google Scholar 

  53. Liu YP, Haasnoot J, Ter Brake O, Berkhout B, Konstantinova P. Inhibition of HIV-1 by multiple siRNAs expressed from a single microRNA polycistron. Nucleic Acids Res. 2008;36(9):2811–24.

    PubMed Central  CAS  PubMed  Google Scholar 

  54. Snyder LL, Ahmed I, Steel LF. RNA polymerase III can drive polycistronic expression of functional interfering RNAs designed to resemble microRNAs. Nucleic Acids Res. 2009;37(19):e127.

    PubMed Central  PubMed  Google Scholar 

  55. Konstantinova P, de Vries W, Haasnoot J, Ter Brake O, de Haan P, Berkhout B. Inhibition of human immunodeficiency virus type 1 by RNA interference using long-hairpin RNA. Gene Ther. 2006;13(19):1403–13.

    CAS  PubMed  Google Scholar 

  56. Liu YP, Haasnoot J, Berkhout B. Design of extended short hairpin RNAs for HIV-1 inhibition. Nucleic Acids Res. 2007;35(17):5683–93.

    PubMed Central  CAS  PubMed  Google Scholar 

  57. Liu YP, von Eije KJ, Schopman NC, Westerink JT, Ter Brake O, Haasnoot J, et al. Combinatorial RNAi against HIV-1 using extended short hairpin RNAs. Mol Ther. 2009;17(10):1712–23.

    PubMed Central  CAS  PubMed  Google Scholar 

  58. Neff CP, Zhou J, Remling L, Kuruvilla J, Zhang J, Li H, et al. An aptamer-siRNA chimera suppresses HIV-1 viral loads and protects from helper CD4(+) T cell decline in humanized mice. Sci Transl Med. 2011;3(66):66ra6.

    PubMed Central  PubMed  Google Scholar 

  59. Zhou J, Rossi JJ. Current progress in the development of RNAi-based therapeutics for HIV-1. Gene Ther. 2011;18(12):1134–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  60. Boutimah F, Eekels JJ, Liu YP, Berkhout B. Antiviral strategies combining antiretroviral drugs with RNAi-mediated attack on HIV-1 and cellular co-factors. Antiviral Res. 2013;98(1):121–9.

    CAS  PubMed  Google Scholar 

  61. Leonard JN, Shah PS, Burnett JC, Schaffer DV. HIV evades RNA interference directed at TAR by an indirect compensatory mechanism. Cell Host Microbe. 2008;4(5):484–94.

    PubMed Central  CAS  PubMed  Google Scholar 

  62. Schopman NC, Braun A, Berkhout B. Directed HIV-1 evolution of Protease inhibitor resistance by second-generation short hairpin RNAs. Antimicrob Agents Chemother. 2012;56(1):479–86.

    PubMed Central  CAS  PubMed  Google Scholar 

  63. Song E, Lee SK, Dykxhoorn DM, Novina C, Zhang D, Crawford K, et al. Sustained small interfering RNA-mediated human immunodeficiency virus type 1 inhibition in primary macrophages. J Virol. 2003;77(13):7174–81.

    PubMed Central  CAS  PubMed  Google Scholar 

  64. Adamson CS, Freed EO. Novel approaches to inhibiting HIV-1 replication. Antiviral Res. 2010;85(1):119–41.

    PubMed Central  CAS  PubMed  Google Scholar 

  65. Rossi JJ, June CH, Kohn DB. Genetic therapies against HIV. Nat Biotechnol. 2007;25(12):1444–54.

    CAS  PubMed  Google Scholar 

  66. Scherer L, Rossi JJ, Weinberg MS. Progress and prospects: RNA-based therapies for treatment of HIV infection. Gene Ther. 2007;14(14):1057–64.

    CAS  PubMed  Google Scholar 

  67. Hinton TM, Wise TG, Cottee PA, Doran TJ. Native microRNA loop sequences can improve short hairpin RNA processing for virus gene silencing in animal cells. J RNAi Gene Silencing. 2008;4(1):295–301.

    PubMed Central  CAS  PubMed  Google Scholar 

  68. Kawasaki H, Taira K. Short hairpin type of dsRNAs that are controlled by tRNA(Val) promoter significantly induce RNAi-mediated gene silencing in the cytoplasm of human cells. Nucleic Acids Res. 2003;31(2):700–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  69. Li L, Lin X, Khvorova A, Fesik SW, Shen Y. Defining the optimal parameters for hairpin-based knockdown constructs. RNA. 2007;13(10):1765–74.

    PubMed Central  CAS  PubMed  Google Scholar 

  70. Miyagishi M, Sumimoto H, Miyoshi H, Kawakami Y, Taira K. Optimization of an siRNA-expression system with an improved hairpin and its significant suppressive effects in mammalian cells. J Gene Med. 2004;6(7):715–23.

    CAS  PubMed  Google Scholar 

  71. Schopman NC, Liu YP, Konstantinova P, Ter Brake O, Berkhout B. Optimization of shRNA inhibitors by variation of the terminal loop sequence. Antiviral Res. 2010;86(2):204–11.

    CAS  PubMed  Google Scholar 

  72. Vlassov AV, Korba B, Farrar K, Mukerjee S, Seyhan AA, Ilves H, et al. shRNAs targeting hepatitis C: effects of sequence and structural features, and comparision with siRNA. Oligonucleotides. 2007;17(2):223–36.

    CAS  PubMed  Google Scholar 

  73. Wei JX, Yang J, Sun JF, Jia LT, Zhang Y, Zhang HZ, et al. Both strands of siRNA have potential to guide posttranscriptional gene silencing in mammalian cells. PLoS One. 2009;4(4):e5382.

    PubMed Central  PubMed  Google Scholar 

  74. Taxman DJ, Livingstone LR, Zhang J, Conti BJ, Iocca HA, Williams KL, et al. Criteria for effective design, construction, and gene knockdown by shRNA vectors. BMC Biotechnol. 2006;6:7.

    PubMed Central  PubMed  Google Scholar 

  75. McManus MT, Petersen CP, Haines BB, Chen J, Sharp PA. Gene silencing using micro-RNA designed hairpins. RNA. 2002;8(6):842–50.

    PubMed Central  CAS  PubMed  Google Scholar 

  76. Guil S, Caceres JF. The multifunctional RNA-binding protein hnRNP A1 is required for processing of miR-18a. Nat Struct Mol Biol. 2007;14(7):591–6.

    CAS  PubMed  Google Scholar 

  77. Liu G, Min H, Yue S, Chen CZ. Pre-miRNA loop nucleotides control the distinct activities of mir-181a-1 and mir-181c in early T cell development. PLoS One. 2008;3(10):e3592.

    PubMed Central  PubMed  Google Scholar 

  78. Michlewski G, Guil S, Semple CA, Caceres JF. Posttranscriptional regulation of miRNAs harboring conserved terminal loops. Mol Cell. 2008;32(3):383–93.

    PubMed Central  CAS  PubMed  Google Scholar 

  79. Berkhout B, Liu YP. Towards improved shRNA and miRNA reagents as inhibitors of HIV-1 replication. Future Microbiol. 2014;9(4):561–71.

    Google Scholar 

  80. Harborth J, Elbashir SM, Vandenburgh K, Manninga H, Scaringe SA, Weber K, et al. Sequence, chemical, and structural variation of small interfering RNAs and short hairpin RNAs and the effect on mammalian gene silencing. Antisense Nucleic Acid Drug Dev. 2003;13(2):83–105.

    CAS  PubMed  Google Scholar 

  81. Ge Q, Ilves H, Dallas A, Kumar P, Shorenstein J, Kazakov SA, et al. Minimal-length short hairpin RNAs: the relationship of structure and RNAi activity. RNA. 2010;16(1):106–17.

    PubMed Central  CAS  PubMed  Google Scholar 

  82. McIntyre GJ, Yu YH, Lomas M, Fanning GC. The effects of stem length and core placement on shRNA activity. BMC Mol Biol. 2011;12:34.

    PubMed Central  CAS  PubMed  Google Scholar 

  83. Dallas A, Ilves H, Ge Q, Kumar P, Shorenstein J, Kazakov SA, et al. Right- and left-loop short shRNAs have distinct and unusual mechanisms of gene silencing. Nucleic Acids Res. 2012;40:9255–71.

    PubMed Central  CAS  PubMed  Google Scholar 

  84. Jensen SM, Schmitz A, Pedersen FS, Kjems J, Bramsen JB. Functional selection of shRNA loops from randomized retroviral libraries. PLoS One. 2012;7(8):e43095.

    PubMed Central  CAS  PubMed  Google Scholar 

  85. Trabucchi M, Briata P, Garcia-Mayoral M, Haase AD, Filipowicz W, Ramos A, et al. The RNA-binding protein KSRP promotes the biogenesis of a subset of microRNAs. Nature. 2009;459(7249):1010–4.

    PubMed Central  CAS  PubMed  Google Scholar 

  86. Vermeulen A, Behlen L, Reynolds A, Wolfson A, Marshall WS, Karpilow J, et al. The contributions of dsRNA structure to Dicer specificity and efficiency. RNA. 2005;11(5):674–82.

    PubMed Central  CAS  PubMed  Google Scholar 

  87. Liu YP, Schopman NC, Berkhout B. Dicer-independent processing of short hairpin RNAs. Nucleic Acids Res. 2013;41(6):3723–33.

    PubMed Central  CAS  PubMed  Google Scholar 

  88. Coley W, Van DR, Carpio L, Guendel I, Kehn-Hall K, Chevalier S, et al. Absence of DICER in monocytes and its regulation by HIV-1. J Biol Chem. 2010;285(42):31930–43.

    PubMed Central  CAS  PubMed  Google Scholar 

  89. Bridge AJ, Pebernard S, Ducraux A, Nicoulaz AL, Iggo R. Induction of an interferon response by RNAi vectors in mammalian cells. Nat Genet. 2003;34(3):263–4.

    CAS  PubMed  Google Scholar 

  90. Gu S, Jin L, Zhang Y, Huang Y, Zhang F, Valdmanis PN, et al. The loop position of shRNAs and pre-miRNAs is critical for the accuracy of Dicer processing in vivo. Cell. 2012;151(4):900–11.

    PubMed Central  CAS  PubMed  Google Scholar 

  91. Dueck A, Ziegler C, Eichner A, Berezikov E, Meister G. microRNAs associated with the different human Argonaute proteins. Nucleic Acids Res. 2012;40(19):9850–62.

    PubMed Central  CAS  PubMed  Google Scholar 

  92. Kumar P, Ban HS, Kim SS, Wu H, Pearson T, Greiner DL, et al. T cell-specific siRNA delivery suppresses HIV-1 infection in humanized mice. Cell. 2008;134:577–86.

    PubMed Central  CAS  PubMed  Google Scholar 

  93. Burnett JC, Rossi JJ. RNA-based therapeutics: current progress and future prospects. Chem Biol. 2012;19(1):60–71.

    PubMed Central  CAS  PubMed  Google Scholar 

  94. Aiuti A, Biasco L, Scaramuzza S, Ferrua F, Cicalese MP, Baricordi C, et al. Lentiviral hematopoietic stem cell gene therapy in patients with Wiskott-Aldrich syndrome. Science. 2013;341(6148):1233151.

    PubMed  Google Scholar 

  95. Biffi A, Montini E, Lorioli L, Cesani M, Fumagalli F, Plati T, et al. Lentiviral hematopoietic stem cell gene therapy benefits metachromatic leukodystrophy. Science. 2013;341(6148):1233158.

    PubMed  Google Scholar 

  96. Cartier N, Hacein-Bey-Abina S, Bartholomae CC, Veres G, Schmidt M, Kutschera I, et al. Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy. Science. 2009;326(5954):818–23.

    CAS  PubMed  Google Scholar 

  97. Dull T, Zufferey R, Kelly M, Mandel RJ, Nguyen M, Trono D, et al. A third-generation lentivirus vector with a conditional packaging system. J Virol. 1998;72(11):8463–71.

    PubMed Central  CAS  PubMed  Google Scholar 

  98. Seppen J, Rijnberg M, Cooreman MP, Oude Elferink RP. Lentiviral vectors for efficient transduction of isolated primary quiescent hepatocytes. J Hepatol. 2002;36(4):459–65.

    CAS  PubMed  Google Scholar 

  99. Zufferey R, Dull T, Mandel RJ, Bukovsky A, Quiroz D, Naldini L, et al. Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J Virol. 1998;72(12):9873–80.

    PubMed Central  CAS  PubMed  Google Scholar 

  100. Liu YP, Berkhout B. Lentiviral delivery of RNAi effectors against HIV-1. Curr Top Med Chem. 2009;9(12):1130–43.

    CAS  PubMed  Google Scholar 

  101. Poluri A, Sutton RE. Titers of HIV-based vectors encoding shRNAs are reduced by a Dicer-dependent mechanism. Mol Ther. 2007;16:378–86.

    PubMed  Google Scholar 

  102. Ter Brake O, Berkhout B. Lentiviral vectors that carry anti-HIV shRNAs: problems and solutions. J Gene Med. 2007;9(9):743–50.

    CAS  PubMed  Google Scholar 

  103. Liu YP, Berkhout B. Design of lentivirally expressed siRNAs. Methods Mol Biol. 2013;942:233–57.

    CAS  PubMed  Google Scholar 

  104. Liu YP, Berkhout B. miRNA cassettes in viral vectors: problems and solutions. Biochim Biophys Acta. 2011;1809:732–45.

    CAS  PubMed  Google Scholar 

  105. Liu YP, Vink MA, Westerink JT, Ramirez de Arellano E, Konstantinova P, Ter Brake O, et al. Titers of lentiviral vectors encoding shRNAs and miRNAs are reduced by different mechanisms that require distinct repair strategies. RNA. 2010;16:1328–39.

    PubMed Central  CAS  PubMed  Google Scholar 

  106. Herrera-Carrillo E, Liu YP, Berkhout B. The impact of unprotected T cells in RNAi-based gene therapy for HIV-AIDS. Mol Ther. 2014;22(3):596–606.

    PubMed Central  CAS  PubMed  Google Scholar 

  107. Shah PS, Pham NP, Schaffer DV. HIV develops indirect cross-resistance to combinatorial RNAi targeting two distinct and spatially distant sites. Mol Ther. 2012;20(4):840–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  108. Herrera-Carrillo E, Berkhout B. The impact of HIV-1 genetic diversity on the efficacy of a combinatorial RNAi-based gene therapy. Gene Ther. 2015 (in press).

    Google Scholar 

  109. Jackson AL, Bartz SR, Schelter J, Kobayashi SV, Burchard J, Mao M, et al. Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol. 2003;21(6):635–7.

    CAS  PubMed  Google Scholar 

  110. Grimm D, Streetz KL, Jopling CL, Storm TA, Pandey K, Davis CR, et al. Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature. 2006;441(7092):537–41.

    CAS  PubMed  Google Scholar 

  111. Hornung V, Guenthner-Biller M, Bourquin C, Ablasser A, Schlee M, Uematsu S, et al. Sequence-specific potent induction of IFN-alpha by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nat Med. 2005;11(3):263–70.

    CAS  PubMed  Google Scholar 

  112. Judge AD, Sood V, Shaw JR, Fang D, McClintock K, Maclachlan I. Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nat Biotechnol. 2005;23(4):457–62.

    CAS  PubMed  Google Scholar 

  113. Eekels JJ, Pasternak AO, Schut AM, Geerts D, Jeeninga RE, Berkhout B. A competitive cell growth assay for the detection of subtle effects of gene transduction on cell proliferation. Gene Ther. 2012;19(11):1058–64.

    Google Scholar 

  114. Ter Brake O, Legrand N, von Eije KJ, Centlivre M, Spits H, Weijer K, et al. Evaluation of safety and efficacy of RNAi against HIV-1 in the human immune system (Rag-2(-/-)(c)(-/-)) mouse model. Gene Ther. 2009;16(1):148–53.

    CAS  PubMed  Google Scholar 

  115. Centlivre M, Legrand N, Klamer S, Liu YP, Eije KJ, Bohne M, et al. Preclinical in vivo evaluation of the safety of a multi-shRNA-based gene therapy against HIV-1. Mol Ther Nucleic Acids. 2013;2:e120.

    PubMed Central  PubMed  Google Scholar 

  116. Mitsuyasu RT, Merigan TC, Carr A, Zack JA, Winters MA, Workman C, et al. Phase 2 gene therapy trial of an anti-HIV ribozyme in autologous CD34(+) cells. Nat Med. 2009;15:285–92.

    PubMed Central  CAS  PubMed  Google Scholar 

  117. Ely A, Naidoo T, Arbuthnot P. Efficient silencing of gene expression with modular trimeric Pol II expression cassettes comprising microRNA shuttles. Nucleic Acids Res. 2009;37(13):e91.

    PubMed Central  PubMed  Google Scholar 

  118. Ely A, Naidoo T, Mufamadi S, Crowther C, Arbuthnot P. Expressed anti-HBV primary microRNA shuttles inhibit viral replication efficiently in vitro and in vivo. Mol Ther. 2008;16(6):1105–12.

    CAS  PubMed  Google Scholar 

  119. Henry SD, van der Wegen P, Metselaar HJ, Tilanus HW, Scholte BJ, van der Laan LJ. Simultaneous targeting of HCV replication and viral binding with a single lentiviral vector containing multiple RNA interference expression cassettes. Mol Ther. 2006;14(4):485–93.

    CAS  PubMed  Google Scholar 

  120. Ivacik D, Ely A, Arbuthnot P. Countering hepatitis B virus infection using RNAi: how far are we from the clinic? Rev Med Virol. 2011;21(6):383–96.

    CAS  PubMed  Google Scholar 

  121. Jia F, Zhang YZ, Liu CM. Stable inhibition of hepatitis B virus expression and replication in HepG2.2.15 cells by RNA interference based on retrovirus delivery. J Biotechnol. 2007;128(1):32–40.

    CAS  PubMed  Google Scholar 

  122. Kumar M, Follenzi A, Garforth S, Gupta S. Control of HBV replication by antiviral microRNAs transferred by lentiviral vectors for potential cell and gene therapy approaches. Antivir Ther. 2012;17(3):519–28.

    CAS  PubMed  Google Scholar 

  123. Yang X, Marcucci K, Anguela X, Couto LB. Preclinical evaluation of an anti-HCV miRNA cluster for treatment of HCV infection. Mol Ther. 2013;21(3):588–601.

    PubMed Central  CAS  PubMed  Google Scholar 

  124. Olsen DB, Davies ME, Handt L, Koeplinger K, Zhang NR, Ludmerer SW, et al. Sustained viral response in a hepatitis C virus-infected chimpanzee via a combination of direct-acting antiviral agents. Antimicrob Agents Chemother. 2011;55(2):937–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  125. Perni RB, Almquist SJ, Byrn RA, Chandorkar G, Chaturvedi PR, Courtney LF, et al. Preclinical profile of VX-950, a potent, selective, and orally bioavailable inhibitor of hepatitis C virus NS3-4A serine protease. Antimicrob Agents Chemother. 2006;50(3):899–909.

    PubMed Central  CAS  PubMed  Google Scholar 

  126. Deeks SG, Autran B, Berkhout B, Benkirane M, Cairns S, Chomont N, et al. Towards an HIV cure: a global scientific strategy. Nat Rev Immunol. 2012;12(8):607–14.

    CAS  PubMed  Google Scholar 

  127. van der Sluis RM, van Montfort T, Pollakis G, Sanders RW, Speijer D, Berkhout B, et al. Dendritic cell-induced activation of latent HIV-1 provirus in actively proliferating primary T lymphocytes. PLoS Pathog. 2013;9(3):e1003259.

    PubMed Central  PubMed  Google Scholar 

  128. van der Sluis RM, Jeeninga RE, Berkhout B. Establishment and molecular mechanisms of HIV-1 latency in T cells. Curr Opin Virol. 2013;3(6):700–6.

    PubMed  Google Scholar 

  129. Dolgin E. New, intensive trials planned on heels of Mississippi HIV “cure”. Nat Med. 2013;19(4):380–1.

    CAS  PubMed  Google Scholar 

  130. Saez-Cirion A, Bacchus C, Hocqueloux L, Avettand-Fenoel V, Girault I, Lecuroux C, et al. Post-treatment HIV-1 controllers with a long-term virological remission after the interruption of early initiated antiretroviral therapy ANRS VISCONTI Study. PLoS Pathog. 2013;9(3):e1003211.

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

BB received support for RNAi research from NWO-CW (Top grant) and ZonMw (Translational gene therapy grant). EHC received a postdoctoral fellowship from the MEC (Spanish Ministry of Education and Science, I-D+i 2008–2011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben Berkhout Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 American Society of Gene and Cell Therapy

About this chapter

Cite this chapter

Herrera-Carrillo, E., Berkhout, B. (2015). Gene Therapy Strategies to Block HIV-1 Replication by RNA Interference. In: Berkhout, B., Ertl, H., Weinberg, M. (eds) Gene Therapy for HIV and Chronic Infections. Advances in Experimental Medicine and Biology(), vol 848. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2432-5_4

Download citation

Publish with us

Policies and ethics