Skip to main content

Neurodegenerative Diseases

  • Chapter
  • First Online:
Microglia in Health and Disease

Abstract

The role of microglial cells in neurodegenerative conditions is key to understanding the development and progression of the innate immune response during brain pathology. Although past and present research efforts have provided clues for understanding the contribution of microglia to neurodegeneration, the future offers new and exciting opportunities to study and modulate microglial biology in the degenerating brain. In this chapter we will summarize the main findings defining the role of microglia in neurodegenerative diseases, both in experimental animal models of disease and in studies with human brain tissue samples. We will also review the technical limitations to the study of microglia in neurodegenerative diseases and discuss the possible further lines of research to be pursued. In summary, we aim to provide a comprehensive picture of the role of microglial cells in the development, progression, and possible treatment of neurodegenerative diseases, to help build on the recent progress in this exciting field of neuroscience.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ajami B, Bennett JL, Krieger C, Tetzlaff W, Rossi FM (2007) Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat Neurosci 10:1538–1543

    Article  PubMed  CAS  Google Scholar 

  • Akiyama H, Nishimura T, Kondo H, Ikeda K, Hayashi Y, McGeer PL (1994) Expression of the receptor for macrophage colony stimulating factor by brain microglia and its upregulation in brains of patients with Alzheimer’s disease and amyotrophic lateral sclerosis. Brain Res 639:171–174

    Article  PubMed  CAS  Google Scholar 

  • Akiyama H, Barger S, Barnum S, Bradt B, Bauer J, Cole GM et al (2000) Inflammation and Alzheimer’s disease. Neurobiol Aging 21:383–421

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Audet JN, Gowing G, Paradis R, Soucy G, Julien JP (2012) Ablation of proliferating cells in the CNS exacerbates motor neuron disease caused by mutant superoxide dismutase. PLoS One 7:e34932

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Beers DR, Henkel JS, Xiao Q, Zhao W, Wang J, Yen AA et al (2006) Wild-type microglia extend survival in PU.1 knockout mice with familial amyotrophic lateral sclerosis. Proc Natl Acad Sci U S A 103:16021–16026

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Blalock EM, Geddes JW, Chen KC, Porter NM, Markesbery WR, Landfield PW (2004) Incipient Alzheimer’s disease: microarray correlation analyses reveal major transcriptional and tumor suppressor responses. Proc Natl Acad Sci U S A 101:2173–2178

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Boche D, Perry VH, Nicoll JA (2013) Review: activation patterns of microglia and their identification in the human brain. Neuropathol Appl Neurobiol 39:3–18

    Article  PubMed  CAS  Google Scholar 

  • Boillee S, Yamanaka K, Lobsiger CS, Copeland NG, Jenkins NA, Kassiotis G et al (2006) Onset and progression in inherited ALS determined by motor neurons and microglia. Science 312:1389–1392

    Article  PubMed  CAS  Google Scholar 

  • Bolmont T, Haiss F, Eicke D, Radde R, Mathis CA, Klunk WE et al (2008) Dynamics of the microglial/amyloid interaction indicate a role in plaque maintenance. J Neurosci 28:4283–4292

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Cardona AE, Pioro EP, Sasse ME, Kostenko V, Cardona SM, Dijkstra IM et al (2006) Control of microglial neurotoxicity by the fractalkine receptor. Nat Neurosci 9:917–924

    Article  PubMed  CAS  Google Scholar 

  • Chen H, Jacobs E, Schwarzschild MA, McCullough ML, Calle EE, Thun MJ et al (2005) Nonsteroidal antiinflammatory drug use and the risk for Parkinson’s disease. Ann Neurol 58:963–967

    Article  PubMed  CAS  Google Scholar 

  • Clement AM, Nguyen MD, Roberts EA, Garcia ML, Boillee S, Rule M et al (2003) Wild-type nonneuronal cells extend survival of SOD1 mutant motor neurons in ALS mice. Science 302:113–117

    Article  PubMed  CAS  Google Scholar 

  • Colton CA, Mott RT, Sharpe H, Xu Q, Van Nostrand WE, Vitek MP (2006) Expression profiles for macrophage alternative activation genes in AD and in mouse models of AD. J Neuroinflammation 3:27

    Article  PubMed  PubMed Central  Google Scholar 

  • Cribbs DH, Berchtold NC, Perreau V, Coleman PD, Rogers J, Tenner AJ et al (2012) Extensive innate immune gene activation accompanies brain aging, increasing vulnerability to cognitive decline and neurodegeneration: a microarray study. J Neuroinflammation 9:179

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Crotti A, Benner C, Kerman BE, Gosselin D, Lagier-Tourenne C, Zuccato C et al (2014) Mutant Huntingtin promotes autonomous microglia activation via myeloid lineage-determining factors. Nat Neurosci 17:513–521

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Crutcher KA, Gendelman HE, Kipnis J, Perez-Polo JR, Perry VH, Popovich PG et al (2006) Debate: “is increasing neuroinflammation beneficial for neural repair?”. J Neuroimmune Pharmacol 1:195–211

    Article  PubMed  Google Scholar 

  • Cunningham C (2013) Microglia and neurodegeneration: the role of systemic inflammation. Glia 61:71–90

    Article  PubMed  Google Scholar 

  • Cunningham C, Deacon R, Wells H, Boche D, Waters S, Diniz CP et al (2003) Synaptic changes characterize early behavioural signs in the ME7 model of murine prion disease. Eur J Neurosci 17:2147–2155

    Article  PubMed  CAS  Google Scholar 

  • Cunningham C, Campion S, Teeling J, Felton L, Perry VH (2007) The sickness behaviour and CNS inflammatory mediator profile induced by systemic challenge of mice with synthetic double-stranded RNA (poly I:C). Brain Behav Immun 21:490–502

    Article  PubMed  CAS  Google Scholar 

  • Cunningham C, Campion S, Lunnon K, Murray CL, Woods JF, Deacon RM et al (2009) Systemic inflammation induces acute behavioral and cognitive changes and accelerates neurodegenerative disease. Biol Psychiatry 65:304–312

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Davoust N, Vuaillat C, Androdias G, Nataf S (2008) From bone marrow to microglia: barriers and avenues. Trends Immunol 29:227–234

    Article  PubMed  CAS  Google Scholar 

  • Dawson TM, Ko HS, Dawson VL (2010) Genetic animal models of Parkinson’s disease. Neuron 66:646–661

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Dickson DW, Lee SC, Mattiace LA, Yen SH, Brosnan C (1993) Microglia and cytokines in neurological disease, with special reference to AIDS and Alzheimer’s disease. Glia 7:75–83

    Article  PubMed  CAS  Google Scholar 

  • Ding Z, Mathur V, Ho PP, James ML, Lucin KM, Hoehne A et al (2014) Antiviral drug ganciclovir is a potent inhibitor of microglial proliferation and neuroinflammation. J Exp Med 211:189–198

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Edison P, Archer HA, Gerhard A, Hinz R, Pavese N, Turkheimer FE et al (2008) Microglia, amyloid, and cognition in Alzheimer’s disease: an [11C](R)PK11195-PET and [11C]PIB-PET study. Neurobiol Dis 32:412–419

    Article  PubMed  CAS  Google Scholar 

  • Eichler FS, Ren JQ, Cossoy M, Rietsch AM, Nagpal S, Moser AB et al (2008) Is microglial apoptosis an early pathogenic change in cerebral X-linked adrenoleukodystrophy? Ann Neurol 63:729–742

    Article  PubMed  Google Scholar 

  • Fernandez-Botran R, Ahmed Z, Crespo FA, Gatenbee C, Gonzalez J, Dickson DW et al (2011) Cytokine expression and microglial activation in progressive supranuclear palsy. Parkinsonism Relat Disord 17(9):683–688

    Article  PubMed  PubMed Central  Google Scholar 

  • Frakes AE, Ferraiuolo L, Haidet-Phillips AM, Schmelzer L, Braun L, Miranda CJ et al (2014) Microglia induce motor neuron death via the classical NF-kB pathway in amyotrophic lateral sclerosis. Neuron 81:1009–1023

    Article  PubMed  CAS  Google Scholar 

  • Franciosi S, Ryu JK, Shim Y, Hill A, Connolly C, Hayden MR et al (2012) Age-dependent neurovascular abnormalities and altered microglial morphology in the YAC128 mouse model of Huntington disease. Neurobiol Dis 45:438–449

    Article  PubMed  CAS  Google Scholar 

  • Frank S, Burbach GJ, Bonin M, Walter M, Streit W, Bechmann I et al (2008) TREM2 is upregulated in amyloid plaque-associated microglia in aged APP23 transgenic mice. Glia 56:1438–1447

    Article  PubMed  Google Scholar 

  • Frautschy SA, Yang F, Irrizarry M, Hyman B, Saido TC, Hsiao K et al (1998) Microglial response to amyloid plaques in APPsw transgenic mice. Am J Pathol 152:307–317

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gerhard A, Pavese N, Hotton G, Turkheimer F, Es M, Hammers A et al (2006) In vivo imaging of microglial activation with [11C](R)-PK11195 PET in idiopathic Parkinson’s disease. Neurobiol Dis 21:404–412

    Article  PubMed  CAS  Google Scholar 

  • Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S et al (2010) Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330:841–845

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gomez-Nicola D, Perry VH (2014) Microglial dynamics and role in the healthy and diseased brain: a paradigm of functional plasticity. Neuroscientist [2014 Apr 10, Epub ahead of print]

    Google Scholar 

  • Gomez-Nicola D, Fransen NL, Suzzi S, Perry VH (2013) Regulation of microglial proliferation during chronic neurodegeneration. J Neurosci 33:2481–2493

    Article  PubMed  CAS  Google Scholar 

  • Gomez-Nicola D, Schetters ST, Perry VH (2014) Differential role of CCR2 in the dynamics of microglia and perivascular macrophages during prion disease. Glia 62(7):1041–1052

    Article  PubMed  Google Scholar 

  • Gordon S (2003) Alternative activation of macrophages. Nat Rev Immunol 3:23–35

    Article  PubMed  CAS  Google Scholar 

  • Gowing G, Philips T, Van Wijmeersch B, Audet JN, Dewil M, Van Den Bosch L et al (2008) Ablation of proliferating microglia does not affect motor neuron degeneration in amyotrophic lateral sclerosis caused by mutant superoxide dismutase. J Neurosci 28:10234–10244

    Article  PubMed  CAS  Google Scholar 

  • Gowing G, Lalancette-Hebert M, Audet JN, Dequen F, Julien JP (2009) Macrophage colony stimulating factor (M-CSF) exacerbates ALS disease in a mouse model through altered responses of microglia expressing mutant superoxide dismutase. Exp Neurol 220:267–275

    Article  PubMed  CAS  Google Scholar 

  • Griffin WS, Stanley LC, Ling C, White L, MacLeod V, Perrot LJ et al (1989) Brain interleukin 1 and S-100 immunoreactivity are elevated in Down syndrome and Alzheimer disease. Proc Natl Acad Sci U S A 86:7611–7615

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Griffin WS, Sheng JG, Roberts GW, Mrak RE (1995) Interleukin-1 expression in different plaque types in Alzheimer’s disease: significance in plaque evolution. J Neuropathol Exp Neurol 54:276–281

    Article  PubMed  CAS  Google Scholar 

  • Guerreiro R, Wojtas A, Bras J, Carrasquillo M, Rogaeva E, Majounie E et al (2013) TREM2 variants in Alzheimer’s disease. N Engl J Med 368:117–127

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Heneka MT, O'Banion MK (2007) Inflammatory processes in Alzheimer’s disease. J Neuroimmunol 184:69–91

    Article  PubMed  CAS  Google Scholar 

  • Herber DL, Roth LM, Wilson D, Wilson N, Mason JE, Morgan D et al (2004) Time-dependent reduction in Abeta levels after intracranial LPS administration in APP transgenic mice. Exp Neurol 190:245–253

    Article  PubMed  CAS  Google Scholar 

  • Herrera AJ, Castano A, Venero JL, Cano J, Machado A (2000) The single intranigral injection of LPS as a new model for studying the selective effects of inflammatory reactions on dopaminergic system. Neurobiol Dis 7:429–447

    Article  PubMed  CAS  Google Scholar 

  • Hirsch EC, Hunot S (2009) Neuroinflammation in Parkinson’s disease: a target for neuroprotection? Lancet Neurol 8:382–397

    Article  PubMed  CAS  Google Scholar 

  • Holmes C, Cunningham C, Zotova E, Woolford J, Dean C, Kerr S et al (2009) Systemic inflammation and disease progression in Alzheimer disease. Neurology 73:768–774

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Holmes C, Cunningham C, Zotova E, Culliford D, Perry VH (2011) Proinflammatory cytokines, sickness behavior, and Alzheimer disease. Neurology 77:212–218

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hoozemans JJ, Veerhuis R, Rozemuller JM, Eikelenboom P (2011) Soothing the inflamed brain: effect of non-steroidal anti-inflammatory drugs on Alzheimer’s disease pathology. CNS Neurol Disord Drug Targets 10:57–67

    Article  PubMed  CAS  Google Scholar 

  • Hughes MM, Field RH, Perry VH, Murray CL, Cunningham C (2010) Microglia in the degenerating brain are capable of phagocytosis of beads and of apoptotic cells, but do not efficiently remove PrPSc, even upon LPS stimulation. Glia 58:2017–2030

    Article  PubMed  PubMed Central  Google Scholar 

  • Hunot S, Boissiere F, Faucheux B, Brugg B, Mouatt-Prigent A, Agid Y et al (1996) Nitric oxide synthase and neuronal vulnerability in Parkinson’s disease. Neuroscience 72:355–363

    Article  PubMed  CAS  Google Scholar 

  • Jonsson T, Stefansson H, Steinberg S, Jonsdottir I, Jonsson PV, Snaedal J et al (2013) Variant of TREM2 associated with the risk of Alzheimer’s disease. N Engl J Med 368:107–116

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Jucker M (2010) The benefits and limitations of animal models for translational research in neurodegenerative diseases. Nat Med 16:1210–1214

    Article  PubMed  CAS  Google Scholar 

  • Kamphuis W, Orre M, Kooijman L, Dahmen M, Hol EM (2012) Differential cell proliferation in the cortex of the APPswePS1dE9 Alzheimer’s disease mouse model. Glia 60:615–629

    Article  PubMed  Google Scholar 

  • Kraft AD, Kaltenbach LS, Lo DC, Harry GJ (2012) Activated microglia proliferate at neurites of mutant huntingtin-expressing neurons. Neurobiol Aging 33(621):e17–e33

    PubMed  Google Scholar 

  • Kreutzberg GW (1996) Microglia: a sensor for pathological events in the CNS. Trends Neurosci 19:312–318

    Article  PubMed  CAS  Google Scholar 

  • Kwan W, Trager U, Davalos D, Chou A, Bouchard J, Andre R et al (2012) Mutant huntingtin impairs immune cell migration in Huntington disease. J Clin Invest 122:4737–4747

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • LaFerla FM, Oddo S (2005) Alzheimer’s disease: Abeta, tau and synaptic dysfunction. Trends Mol Med 11:170–176

    Article  PubMed  CAS  Google Scholar 

  • Lambert JC, Heath S, Even G, Campion D, Sleegers K, Hiltunen M et al (2009) Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease. Nat Genet 41:1094–1099

    Article  PubMed  CAS  Google Scholar 

  • Lawson LJ, Perry VH, Gordon S (1992) Turnover of resident microglia in the normal adult mouse brain. Neuroscience 48:405–415

    Article  PubMed  CAS  Google Scholar 

  • McCoy MK, Martinez TN, Ruhn KA, Szymkowski DE, Smith CG, Botterman BR et al (2006) Blocking soluble tumor necrosis factor signaling with dominant-negative tumor necrosis factor inhibitor attenuates loss of dopaminergic neurons in models of Parkinson’s disease. J Neurosci 26:9365–9375

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • McGeer PL, McGeer EG (2002) The possible role of complement activation in Alzheimer disease. Trends Mol Med 8:519–523

    Article  PubMed  CAS  Google Scholar 

  • McGeer PL, Itagaki S, Boyes BE, McGeer EG (1988) Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology 38:1285–1291

    Article  PubMed  CAS  Google Scholar 

  • McGeer PL, Akiyama H, Itagaki S, McGeer EG (1989) Activation of the classical complement pathway in brain tissue of Alzheimer patients. Neurosci Lett 107:341–346

    Article  PubMed  CAS  Google Scholar 

  • McGeer PL, Schwab C, Parent A, Doudet D (2003) Presence of reactive microglia in monkey substantia nigra years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine administration. Ann Neurol 54:599–604

    Article  PubMed  CAS  Google Scholar 

  • Mildner A, Schmidt H, Nitsche M, Merkler D, Hanisch UK, Mack M et al (2007) Microglia in the adult brain arise from Ly-6ChiCCR2+ monocytes only under defined host conditions. Nat Neurosci 10:1544–1553

    Article  PubMed  CAS  Google Scholar 

  • Mildner A, Schlevogt B, Kierdorf K, Bottcher C, Erny D, Kummer MP et al (2011) Distinct and non-redundant roles of microglia and myeloid subsets in mouse models of Alzheimer’s disease. J Neurosci 31:11159–11171

    Article  PubMed  CAS  Google Scholar 

  • Mogi M, Harada M, Kondo T, Riederer P, Inagaki H, Minami M et al (1994) Interleukin-1 beta, interleukin-6, epidermal growth factor and transforming growth factor-alpha are elevated in the brain from Parkinsonian patients. Neurosci Lett 180:147–150

    Article  PubMed  CAS  Google Scholar 

  • Moller T (2010) Neuroinflammation in Huntington’s disease. J Neural Transm 117:1001–1008

    Article  PubMed  Google Scholar 

  • Nguyen MD, D’Aigle T, Gowing G, Julien JP, Rivest S (2004) Exacerbation of motor neuron disease by chronic stimulation of innate immunity in a mouse model of amyotrophic lateral sclerosis. J Neurosci 24:1340–1349

    Article  PubMed  CAS  Google Scholar 

  • Pavese N, Gerhard A, Tai YF, Ho AK, Turkheimer F, Barker RA et al (2006) Microglial activation correlates with severity in Huntington disease: a clinical and PET study. Neurology 66:1638–1643

    Article  PubMed  CAS  Google Scholar 

  • Perry VH (2012) Innate inflammation in Parkinson’s disease. Cold Spring Harb Perspect Med 2:a009373

    Article  PubMed  PubMed Central  Google Scholar 

  • Perry VH, Cunningham C, Boche D (2002) Atypical inflammation in the central nervous system in prion disease. Curr Opin Neurol 15:349–354

    Article  PubMed  Google Scholar 

  • Perry VH, Cunningham C, Holmes C (2007) Systemic infections and inflammation affect chronic neurodegeneration. Nat Rev Immunol 7:161–167

    Article  PubMed  CAS  Google Scholar 

  • Perry VH, Nicoll JA, Holmes C (2010) Microglia in neurodegenerative disease. Nat Rev Neurol 6:193–201

    Article  PubMed  Google Scholar 

  • Politis M, Pavese N, Tai YF, Kiferle L, Mason SL, Brooks DJ et al (2011) Microglial activation in regions related to cognitive function predicts disease onset in Huntington’s disease: a multimodal imaging study. Hum Brain Mapp 32:258–270

    Article  PubMed  Google Scholar 

  • Popovich PG, Longbrake EE (2008) Can the immune system be harnessed to repair the CNS? Nat Rev Neurosci 9:481–493

    Article  PubMed  CAS  Google Scholar 

  • Pott Godoy MC, Tarelli R, Ferrari CC, Sarchi MI, Pitossi FJ (2008) Central and systemic IL-1 exacerbates neurodegeneration and motor symptoms in a model of Parkinson’s disease. Brain 131:1880–1894

    Article  PubMed  Google Scholar 

  • Priller J, Prinz M, Heikenwalder M, Zeller N, Schwarz P, Heppner FL et al (2006) Early and rapid engraftment of bone marrow-derived microglia in scrapie. J Neurosci 26:11753–11762

    Article  PubMed  CAS  Google Scholar 

  • Prinz M, Mildner A (2011) Microglia in the CNS: immigrants from another world. Glia 59:177–187

    Article  PubMed  Google Scholar 

  • Ransohoff RM, Perry VH (2009) Microglial physiology: unique stimuli, specialized responses. Annu Rev Immunol 27:119–145

    Article  PubMed  CAS  Google Scholar 

  • Sapp E, Kegel KB, Aronin N, Hashikawa T, Uchiyama Y, Tohyama K et al (2001) Early and progressive accumulation of reactive microglia in the Huntington disease brain. J Neuropathol Exp Neurol 60:161–172

    PubMed  CAS  Google Scholar 

  • Schwab C, Klegeris A, McGeer PL (2010) Inflammation in transgenic mouse models of neurodegenerative disorders. Biochim Biophys Acta 1802:889–902

    Article  PubMed  CAS  Google Scholar 

  • Shaftel SS, Kyrkanides S, Olschowka JA, Miller JN, Johnson RE, O’Banion MK (2007) Sustained hippocampal IL-1 beta overexpression mediates chronic neuroinflammation and ameliorates Alzheimer plaque pathology. J Clin Invest 117:1595–1604

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sierra A, Abiega O, Shahraz A, Neumann H (2013) Janus-faced microglia: beneficial and detrimental consequences of microglial phagocytosis. Front Cell Neurosci 7:6

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Simard AR, Rivest S (2006) Neuroprotective properties of the innate immune system and bone marrow stem cells in Alzheimer’s disease. Mol Psychiatry 11:327–335

    Article  PubMed  CAS  Google Scholar 

  • Simard AR, Soulet D, Gowing G, Julien JP, Rivest S (2006) Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer’s disease. Neuron 49:489–502

    Article  PubMed  CAS  Google Scholar 

  • Singhrao SK, Neal JW, Morgan BP, Gasque P (1999) Increased complement biosynthesis by microglia and complement activation on neurons in Huntington’s disease. Exp Neurol 159:362–376

    Article  PubMed  CAS  Google Scholar 

  • Sriram K, Miller DB, O’Callaghan JP (2006) Minocycline attenuates microglial activation but fails to mitigate striatal dopaminergic neurotoxicity: role of tumor necrosis factor-alpha. J Neurochem 96:706–718

    Article  PubMed  CAS  Google Scholar 

  • Su X, Maguire-Zeiss KA, Giuliano R, Prifti L, Venkatesh K, Federoff HJ (2008) Synuclein activates microglia in a model of Parkinson’s disease. Neurobiol Aging 29:1690–1701

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Tai YF, Pavese N, Gerhard A, Tabrizi SJ, Barker RA, Brooks DJ et al (2007) Microglial activation in presymptomatic Huntington’s disease gene carriers. Brain 130:1759–1766

    Article  PubMed  Google Scholar 

  • Trager U, Tabrizi SJ (2013) Peripheral inflammation in neurodegeneration. J Mol Med (Berl) 91:673–681

    Article  Google Scholar 

  • Trager U, Andre R, Lahiri N, Magnusson-Lind A, Weiss A, Grueninger S et al (2014) HTT-lowering reverses Huntington’s disease immune dysfunction caused by NFkappaB pathway dysregulation. Brain 137:819–833

    Article  PubMed  Google Scholar 

  • Troost D, Van den Oord JJ, Vianney de Jong JM (1990) Immunohistochemical characterization of the inflammatory infiltrate in amyotrophic lateral sclerosis. Neuropathol Appl Neurobiol 16:401–410

    Article  PubMed  CAS  Google Scholar 

  • Valente T, Mancera P, Tusell JM, Serratosa J, Saura J (2012) C/EBPbeta expression in activated microglia in amyotrophic lateral sclerosis. Neurobiol Aging 33:2186–2199

    Article  PubMed  CAS  Google Scholar 

  • Vlad SC, Miller DR, Kowall NW, Felson DT (2008) Protective effects of NSAIDs on the development of Alzheimer disease. Neurology 70:1672–1677

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Walsh S, Finn DP, Dowd E (2011) Time-course of nigrostriatal neurodegeneration and neuroinflammation in the 6-hydroxydopamine-induced axonal and terminal lesion models of Parkinson’s disease in the rat. Neuroscience 175:251–261

    Article  PubMed  CAS  Google Scholar 

  • Wang G, Zhang Y, Chen B, Cheng J (2003) Preliminary studies on Alzheimer’s disease using cDNA microarrays. Mech Ageing Dev 124:115–124

    Article  PubMed  CAS  Google Scholar 

  • Wu DC, Jackson-Lewis V, Vila M, Tieu K, Teismann P, Vadseth C et al (2002) Blockade of microglial activation is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson disease. J Neurosci 22:1763–1771

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Gomez-Nicola Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gomez-Nicola, D., Perry, V.H. (2014). Neurodegenerative Diseases. In: Tremblay, MÈ., Sierra, A. (eds) Microglia in Health and Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1429-6_18

Download citation

Publish with us

Policies and ethics