

WORKSHOPS IN COMPUTING

Series edited by C. J. van Rijsbergen

Also in this series

Women Into Computing: Selected Papers
1988-1990
Gillian Lovegrove and Barbara Segal (Eds.)

3rd Rennement Workshop (organised by
BCS-F ACS. and sponsored by IBM UK
Laboratories. Hursley Park and the Programming
Research Group. University of Oxford).
Hursley Park, 9-11 January 1990
Carroll Morgan and J. C. P. Woodcock (Eds.)

Designing Correct Circuits, Workshop jointly
organised by the Universities of Oxford and
Glasgow. Oxford. 26-28 September 1990
Geraint Jones and Mary Sheeran (Eds.)

Functional Programming, Glasgow 1990,
Proceedings of the 1990 Glasgow Workshop on
Functional Programming. Ullapool. Scotland.
13-15 August 1990
Simon L. Peyton Jones. Graham Hutton and
Carsten Kehler Holst (Eds.)

4th Reftnement Workshop, Proceedings of the
4th Refinement Workshop. organised by BCS­
FACS. Cambridge. 9-11 January 1991
Joseph M. Morris and RogerC. Shaw (Eds.)

AI and Cognitive Science '90, University of
Ulster at Jordanstown. 20-21 September 1990
Michael F. McTear and Norman Creaney (Eds.)

Software Re-use, Utrecht 1989, Proceedings of
the Software Re-use Workshop. Utrecht,
The Netherlands. 23-24 November 1989
Liesbeth Dusink and Patrick Hall (Eds.)

z User Workshop, 1990, Proceedings of the Fifth
Annual Z User Meeting, Oxford,
17-18 December 1990
J.E. Nicholls (Ed.)

IV Higher Order Workshop, Banff 1990
Proceedings of the IV Higher Order Workshop.
Banff. Alberta, Canada. 10-14 September 1990
Graham Birtwistle (Ed.)

7th UK Computer and Telecommunications
Performance Engineering Workshop,
Edinburgh. 22-23 July 1991
J. Hillston, P.J.B. King and R.J. Pooley (Eds.)

Speclncatlons cI Database Systems,
International Workshop on Specifications of
Database Systems, Glasgow, 3-5 July 1991
David J. HaIpCr and Moira C. Norrie (Eds.)

continued on back page ...

Geraint A.Wiggins, Chris Mellish and Tim Duncan (Eds.)

ALPUK91
Proceedings of the 3rd UK Annual
Conference on Logic Programming,
Edinburgh, 10-12 April 1991

Springer-Verlag London Ltd.

Geraint A. Wiggins, MA, PhD
Dream Group, Department of Artificial Intelligence
University of Edinburgh, 80 South Bridge,
Edinburgh EHl IHN, Scotland

Chris Mellish, MA, PhD
Department of Artificial Intelligence
University of Edinburgh, 80 South Bridge,
Edinburgh EHl IHN, Scotland

Tim Duncan, BA, MSc
Artificial Intelligence Applications Institute
University of Edinburgh, 80 South Bridge,
Edinburgh EHl IHN, Scotland

British Library Cataloguing in Publication Data
Conference on Logic Programming (3rd: 1991: Edinburgh, Scotland)
Proceedings of the 3rd UK annual Conference on Logic Programming. -
(Workshops in computing)
I. Title ll. Wiggins, Geraint Ill. Mellish, C.S. (Christopher S.), 1954-
IV. Duncan, Tim V. Series
005.133
ISBN 978-3-540-19734-8 ISBN 978-1-4471-3546-3 (eBook)
DOI 10.1007/978-1-4471-3546-3

Library of Congress Data available

Apart from any fair dealing for the purposes of research or private study, or
criticism or review, as permitted under the Copyright, Designs and Patents Act
1988, this publication may only be reproduced, stored or transmitted, in any form
or by any means, with the prior permission in writing of the publishers, or in the
case of reprographic reproduction in accordance with the terms of licences issued
by the Copyright Licensing Agency. Enquiries concerning reproduction outside
those terms should be sent to the publishers.

© Springer-Verlag London 1992
Originally published by Springer-Verlag London Berlin Heidelberg in 1992

The use of registered names, trademarks etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the
relevant laws and regulations and therefore free for general use.

The publisher makes no representation, express or implied, with regard to the
accuracy of the information contained in this book and cannot accept any legal
responsibility or liability for any errors or omissions that may be made.

34/3830-543210 Printed on acid-free paper

Preface

Logic Programming is the idea of using logic as a programming language,
explicitly distinguishing between the declarative description of an algorithm
and how the execution is controlled. If it were possible to program in
logic, then in principle it would be much more feasible to reason (either
formally or informally, automatically or by hand) about what a program
was computing, and whether this was correct, than if we were forced to
use conventional programming languages.

Since logic programming was first conceived nearly 20 years ago,
theoretical and technological developments have transformed the dream
into something that is in many respects a reality. Although there are still
many challenging research issues to be faced, Logic Programming has by
now made a significant mark on many disciplines - for instance Database
Theory, Artificial Intelligence, Computational Linguistics and Software
Engineering.

Researchers from the UK played a significant part in the birth of Logic
Programming as an important and well-regarded field, and there is a
flourishing research community here. Unfortunately, the community is
fragmented into many separate groups and for various reasons only a
relatively small part of the work going on can be represented at the large
International Conferences on Logic Programming. It was for these and
other reasons that the Association for Logic Programming formed a UK
branch in 1988.

This book arose from the third conference held by that UK branch of
the ALP, the first two having taken place in London and Bristol. The
conference was held in Apri11991 and the site chosen was the University
of Edinburgh, the place where Kowalski did his first vital work on the
procedural interpretation of Hom clauses and where Warren pioneered
the implementation of Prolog. Chris Mellish was conference Chair. Pat
Hill and Frank McCabe acted as an informal programme committee and
gave invaluable help in reviewing the submitted papers.

The papers selected for the proceedings reflect the breadth of interest
in the logic programming world. Peter Kacsuk, Matthew Huntbach, and
Zdravko Markov and Christo Dichev all discuss different aspects of
problems in parallelisation of logic programming languages. John
Darlington, Y ike Guo and Qian Wu discuss a general approach to constraint
logic programming. Yossi Lichtenstein, Bob Welham and Ajay Gupta

vi Preface

consider some issues in knowledge representation and real-world
modelling; the real-world theme continues with Chris Roast's approach
to specifying interactive systems.

Robert Gaizauskas discusses composition of answers to logical queries
in a way potentially useful in AND-paraUellogic languages; and Brian
Ross gives a general semantics for proving Prolog program properties in
the Calculus of Communicating Systems.

On the theme of Deductive Databases, V.S. Lakshmanan and C.H.
Vim propose an improvement on the idea of magic sets for query processing.
and Christoph Draxler discusses an approach to non-first-normal-form
database access from Prolog. Dave Robertson presents ongoing work on
a specialised editor for helping novices to program in Prolog, and,
finally, Roger Scowen gives a detailed example of the problems facing
WG 17, the ISO working group on Prolog Standardisation.

The editors believe that this volume presents a good impression of the
current progress in logic programming. Thanks are due to all of the
authors, whose precision and efficiency during the preparation process
has made the task much more agreeable than it might otherwise have
been.

Edinburgh
August 1991

Geraint A. Wiggins
Chris Mellish
Tim Duncan

Contents

Towards Implementing Prolog on Massively Parallel Mixed
Architecture Computers
Peter Kacsuk ... 1

Speculative Computation and Priorities in Concurrent Logic
Languages
Matthew Huntbach ... 23

Distributed Logic Programming
Zdravko Markov. Christo Dichev .. 36

A General Computational Scheme for Constraint Logic
Programming
John Darlington. Yike Guo. Qian Wu ... 56

Time Representation in Prolog Circuit Modelling
Yossi Lichtenstein. Bob Welham. Ajay Gupta 78

Interacting with the Logic of the Problem: Specifying and
Prototyping Interactive Systems
Chris Roast ... 94

Deriving Answers to Logical Queries Via Answer Composition
Robert J. Gaizauskas .. 112

Using Algebraic Semantics for Proving Prolog Termination and
Transformation
Brian J. Ross ..•.............. 135

Accessing Relational and NP Databases Through Database Set
Predicates
Christoph Draxler .. 156

Can Filters do Magic for Deductive Databases?
V.S. Lakshmanan. C.H. Yim... 174

viii Contents

A Simple Prolog Techniques Editor for Novice Users
Dave Robertson .. 190

The Predicate consult/l - A Problem in Prolog Standardisation
Roger Scowen ...•..•.. 206

Author Index ... 217

The following proceedings of previous ALPUK conferences are published
by Intellect (Suite 2, 108-110 London Road, Headington, Oxford OX3
9AW):

Dodd T., Owens R. and Torrance, T. (Eels.)
Logic Programming - Expanding the Horizons
ISBN 1-871516-15-3, £24.95

Brough D. (Ed.)
Logic Programming - New Frontiers
ISBN 1-871516-25-0, £24.95

Towards Implementing Prolog on
Massively Parallel Mixed
Architecture Computers

Peter Kacsuk1

h!633kacOella.hu

Centre for Parallel Computing,
Queen Mary and Westfield College,

Mile End Road,
London El 4NS,

England

Abstract

A method for implementing Prolog on Massively Parallel Mixed Ar­
chitecture Systems (MAPMAS) is shown in the paper. First the physical
and logical strudure of the target MAPMAS (a OAP/Multi-Transputer
system) is described. A generalised dataflow model for transforming
Prolog programs into the Dataflow Search Graph (OSG) and executing
them based on the DSG is shodly overviewed and illustrated with sim-
ple examples. In the paper an informal description of the model is given
for exploiting OR-parallelism and pipe1ined AND-parallelism. The main
contribution of the paper is the explanation how fad- intensive Prolog
programs can be implemented on the DAP side of the MAPMAS. The key
points of the implementation are the mapping of the operators and the
organisation of parallel token communication in an SIMO environment.

1: Introduction

For solving complex AI problems within an acceptable response time the com­
puting speed of even the most powerful sequential computers can often prove to
be unsatisfactory. The inherent nondeterminism of heuristic search through an
enormous database or even knowledge-base requires computing systems that.
are able to speed-up computation by exploiting their parallel architecture.

In the past few years large research efforts have been done to investi­
gate the possibilities of using parallel processing techniques for solving AI

1 The author may now be contacted care of Multilogic Ltd., H-1l19 Budapest, Vahot u.
6., Hungary

2

problems. One major direction in this field is the study of parallel imple­
mentation methods of logic programming languages. All of these researches
consider one particular class of parallel computers, such as SIMD machines
[Kacsuk & Bale 87, Barklund et a188], shared memory based multiprocessors
[Warren 87, Gupta & Jayaraman 90] or distributed memory systems [Taylor et
a187, Ichiyoshi et a188, Kale & Ramkumar 90].

However we believe that a complex AI program written in Prolog con­
sists of parts which are inherently sequential, or fact-intensive containing large
predicates with hundreds of clauses in each predicate and rule-intensive parts
including OR- and AND-parallel branches. Obviously the different parts re­
quire different kinds of parallel computer architectures to efficiently handle the
Prolog database and its parallel execution methods.

At QMW, research is under way to investigate the possibilities of imple­
menting Prolog on Massively Parallel Mixed Architecture Systems (MAPMAS).
The available prototype system consists of an AMT DAP 510 computer (with
1024 processing elements) and a Transtech NTP-I000 transputer array (with
four nodes).

If we want to exploit massively parallel systems we need a computation
model which allows the fragmentation of the Prolog program into a large num­
ber of simple operators possibly working in parallel. We propose a generalised
dataflow model which is equally usable both on the DAP and on the transputer
network. This article attempts to give an overview of our generalised dataflow
model and its use for mapping and executing Prolog programs on massively
parallel DAP /transputer systems. The implementation considerations for the
transputer side have been described in [Kacsuk 91] and therefore in this paper
we concentrate on the DAP side.

2: Structure of MAPMAS

The Transtech NTPI000 has slots for up to 16 T80D transputers with varying
amounts of external local memory. Four of these transputers are connected to a
software- configurable switching network which allows various interconnection
patterns to be set up. Also connected to the switching network is a T414
transputer which acts as a dedicated communication handler between the T80Ds
and the Sun host. This transputer has dual ported external local memory and
a DMA chip is able to transfer blocks of up to 8 bytes to and from the Sun's
VME bus using one port of this memory. The T414 is able to transfer data

3

to and from the switching network through the other port using all four of
its links. This allows a sustained host-transputer transfer rate of 6Mbytes/sec
allowing for bus arbitration, etc. Our OAP is connected to the Sun via a SCSI 3
interface, but we have also successfully used the Transtech board with another
OAP connected directly to the VME bus.

TRANSTECH NTP1000 with 4 Proc ••• or. SUN 3/150 filmlmlmll
(Various ~;::';"""'l~
VME cards)

Figure 1: The physical structure of MAPMAS

The logical structure of MAPMAS represents a 4-layer architecture shown
in Figure 2. The role of the layers are as follows:

1. Sequential Processor Pool (SPP) Layer:

The SPP layer consists of transputers which can not communicate with
each other. Each PE (Processing Element) of SPP is connected to one
PE of the 2nd layer. The PEs of SPP serve for executing the inherently
sequential parts of Prolog programs. Their local memories contain a com­
plete sequential Prolog interpreter and the WAM code of those sequential
predicates. The connection of the two layers is shown in Figure 2.

2. Intelligent Logic Network (ILN) Layer:
This layer contains the control-parallel subparts of Prolog programs. ILN
contains consists of transputers connected in a special 3-neighbour topol­
ogy [Kacsuk 91].

3. Host Layer:

Serves for realising the user interface and the communication device be­
tween the ILN and the DAP.

4. Distributed Array Processor (DAP) Layer:
The DAP Layer runs the data-parallel subparts of Prolog programs.

4

.....

.....

Sequential
Processor
Pool layer

Intelligent
Logic
Network
Layer

Host
Layer

DAP
Layer

Figure 2: The logical structure of MAPMAS

3: Graph Representation of Prolog Programs

In the Intelligent Logic Network Layer Prolog programs are represented by the
Dataflow Search Graph containing the following operator types:

UIIFY:

UIIT:
AID:
OR:
HCOR:

COR:

CUT:
BUILTII:
CALL:
PRED:
SEQ:
DAP:

for executing unification on clause heads and entering
binding results into clause bodies
for executing unification on unit clause heads
for connecting body goals
for connecting alternative clauses of a predicate
for connecting two alternative clauses of a predicate if the
first one contains a cut goal in its body
for connecting alternative inference routes for a goal fol­
lowed by a series of goals including cut
for realising cut
for executing built-in predicates
for calling shared predicates (procedures)
for sharing predicates among mUltiple calls
for sequential execution of a subpart
for data parallel execution of a subpart

The graphical notation of operators can be seen in Figure 3.
Each Prolog program can be translated into the so-called Dataflow Search

request.in reply .out

request.out reply. in

,equest°A'YOou,

request.ou~rePIY . in2
reply . in 1 req uest.out2

CR

,eque,1. ~'Y oOU'

request.ouUrePly.in2
reply.in1 request .out2

a::x:R

,eqUeSLO'YOOU'

ONIT

request.in .out

,eque'I.:t('Y oOU'

req uest.ou~rePIY. in2
reply .in1 request .out2

ClE

,equesti~~'iP'YOU' ~ ._ ,equestoimi'YOOU'
request.i Iy.out

BOILT-m

,eque"2-S''I.oou, ~
request.out rr reply .in

CALL

Figure 3: Graphical notation of operators

5

Graph (called DSG) based on the operators given above. The transformation
rules are as follows:

6

1. A predicate consisting of n unit-clauses is represented by a single UBIT

operator.

2. A clause with body (rule-clause) in the form of

a:- b1, b2, ... ,bn

is represented by the UIIFY / AID ring shown in Figure 4:

bl b2 b3 bn

Figure 4: Clause representation

3. DSGs of clauses within a predicate containing unit-clauses and rule­
clauses in a mixed way are connected by OR operators.

4. If a predicate is called from several places of a program, only one copy
of the DSG representation of the predicate is included in the DSG of
the program. The predicate DSG starts with a PRED operator and in the

calling positions CALL operators are used. The CALL/PRED operator pair
is also used for realising recursion as shown below and in Figure 5:

b:- b, c, b.

5. The use of cut is allowed by using the CUT, HCOR and COR operators
[Kacsuk 91].

6. It makes no sense to execute inherently sequential subprograms of Prolog
by message passing based on the dataflow graph representation. There­
fore inherently sequential subprograms can be packed in SEQ operators

and will be executed by ordinary sequential interpretation techniques.
Database operations like assert and retract have no parallel operational
semantics and therefore they cannot be mapped in the dataflow graph

7

Figure 5: Use of CALL/PRED operators

representation. However if their scope can be included in a SEQ operator
they can be used as well. (See more details in Section 5.)

7. In case of database oriented subparts of the Prolog program the data
parallel nature of the DAP can be exploited by using the DAP operator.
A subprogram represented by a DAP operator is executed on the DAP.
These subprograms are also represented by a Dataflow Search Graph
however with some restrictions:

(a) The subprogram should be a pure Prolog program without any side­
effect built-in predicate (therefore CUT, BCOR and COR are not used
within the DAP).

(b) Recursion is not allowed, subgraphs are replicated in case of multi­
pled calls (CALL and PRED are not used).

(c) Compound terms are not implemented.

(d) The call of SEQ operators is prohibited.

In spite of these restrictions there are a number of database oriented prob­
lems that can be solved by this limited number of operators. A typical example
might be the map colouring problem. A simplified version for five countries
and three colours is shown in Figure 6 and Program 1, and its Dataflow Search
Graph can be seen in Figure 7.

8

B

A C E

D

Figure 6: Map Colouring Problem for three Countries and five Colours

colour(A,B,C,D,E):- neighbour (A ,B) , neighbour(A,C),
neighbour(A,D), neighbour(B,C),
neighbour(B,E), neighbour(C,D),
neighbour(C,E), neighbour(D,E).

neighbour(green, red).
neighbour (green, yellow).
neighbour(red,green).
neighbour (red , yellow).
neighbour(yellow,red).
neighbour(yellow,green).

Program 1.

4: Parallel Execution

The parallel execution modes of the transputer-DSG and the DAP-DSG are
very similar, the only difference originates from the various forms of the UBIT

operators. Both graphs are able to exploit OR-parallelism and pipelined AND-'
parallelism. The computation in the DSG is driven by the flow of tokens
through the graph just like in dataflow models. However in the DSG the
operators can have inner state and memory which is not permitted in pure
dataflow models. The following token types are used in the DSG:

request token:
reply tokens:

request/reply token:

DO «(enll),(args})
suee «(enll)
FAIL
SUB «(enll})

9

The computation is based on the concept of token streams. It means that
as a reply for a request token each operator will produce a token stream. A
token stream is a series of tokens consisting of either n consecutive suee tokens
or n consecutive SUB tokens terminated by one FAIL token. The empty stream
consists of only one FAIL token.

The DSG of a Prolog program can be used as a pipeline, i. e. , after sending
a request token to the DSG a new one can immediately be sent again instead of
waiting first for the result token stream. Token streams belonging to different
request tokens are distinguished by context fields.

As a reply for a request token the Dataflow Search Graph of the Prolog
program will send back all possible responses packed in a token stream. SUB or
suee tokens in the stream represent the proper solutions. If there is no right
answer for the question, then the empty stream, ie., one FAIL token will be
sent back.

Now we give an informal description of the operators to show how Prolog
programs are executed based on the DAP-DSG (the work of transputer-DSG
is very similar and was described in [Kacsuk 91]).

4.1: UNIT and BUILTIN operators

All the leaves of the Dataflow Search Graph are UIIT or BUILTU operators.
Thus they are responsible for initiating result token streams going upwards in
the graph. A UIIT operator represents n unit-clauses of a given predicate by
storing the arguments of the clauses in local storage. A DO token represents a
goal, where the arglist of the DO token corresponds to the arglist of the goal.
Therefore whenever a UIIT operator receives a DO token it sequentially unifies
the goal arguments and the stored unit-clause arguments. The results of the
successful unifications are packed into suee tokens and sent back to the caller
operator through the reply. out arc of UIIT. Failed unifications do not result.
in any reply token. When all the unifications are completed a FAIL token is
generated on the reply. out arc as an EOS (end of stream) token.

The BUILTII operators work similarly but instead of doing unification they
execute the corresponding function on the arglist of the DO token.

10

4.2: UNIFY and AND operators

The head of a clause is represented by a UIIFY operator and the body by a
chain of AID operators. These operators work in a ring called the "UIIFY / AID

ring" where only SUB token streams can move. Neither DO nor SUcc tokens are
permitted here.

The UIIFY operator represents the head of a rule-clause by storing the ar­
guments of the head in local storage. It also stores the permanent variables
of the clause. (The permanent variable has the same meaning as in the WAM
[Warren 83].) When a DO token arrives on the request. in arc the UIIFY per­
forms unification between the locally stored clause arguments and the goal
arguments of the DO token. In case of failed unification a FAIL token is placed
on the reply. out arc and the UIIFY operator is ready to accept another DO

token.

If the unification is successful, a SUB token is generated and placed on the
request. out arc. The arguments of the SUB token are the permanent variables
of the clause in the order of their appearance in the clause or their binding
value if they were instantiated during the unification. Finally a FAIL token is
placed on the request. out arc. Bindings of the goal variables and temporary
variables created during the unification are stored in the local storage of the
UIIFY operator.

The SUB token arrives on the request. in arc of the first AID operator of
the clause representation. The AID operator represents a goal in the clause
body by locally storing the goal arguments. When a SUB token arrives, the
AID operator extracts from the arguments of the SUB token those variables
(with their possible binding value) that are needed for the corresponding goal
execution. Applying these bindings for the stored goal arguments the AID

operator creates a DO token on its request. out arc. The arguments of the
SUB token are temporarily stored until a reply token stream arrives on the
reply. in arc. The AID operator generates a SUB token from each SUcc token
of the reply stream by substituting the variables of the temporarily stored SUB

token with the corresponding binding values found in the SUCC token. Finally
a FAIL token is placed on the reply. out) arc when the FAIL token appears on
the reply. in arc.

This token stream arrives on the request. in arc of the next AID operator.
This works as described for the first one but now the token stream might
contain more than one SUB token. In this case the AID operator temporarily
stores the number of the SUB tokens in the request stream and will generate a

11

FAIL token when the same number of FAIL tokens arrived on its reply. in arc.

Receiving a reply token stream on the reply. in arc the OIIFY operator
again unifies the temporarily stored arguments of the original DO token with
binding values from the SUB tokens and thereby generates as many suee tokens
as many SUB tokens arrive in the reply stream. The suee tokens contain the
binding values of the variables of the original DO token. Finally a FAIL token is
sent on the reply. out) arc. The token stream concept and its role in realising
pipeline AND-parallelism is shown in Figure 7 .

.....------ SUB(green.yellow,yellow,D,E)
.....----- SUB(green,yellow,red,D,E)

SUB(green,red,red,yellow,E)
SUB(green,red,red,red,E)

OO(green,D)

o DO token • SUB token • FAil token

Figure 7: The DSG of the Map Colouring Problem

4.3: OR operator

The OR operator is the source of OR-parallelism in this DSG by copying the
incoming DO token on both request. out arcs. This way two new DO tokens are
generated and as a result two subparts of the Dataflow Search Graph will work
in parallel. The reply token streams arriving back from the activated subparts
are merged into one token stream by the OR operator.

12

5: Language Issues

AB we have seen in the dataflow graph representation those parts of the Prolog
program intended to be executed in parallel should be distinguished in the
language from those parts to be executed sequentially. Furthermore in the
parallel parts the data-parallel and control-parallel parts should be separated.
Therefore we need a simple extension of Prolog that provides the user with the
.suitable language tools.

In this extension of Prolog everything is control-parallel by default and
supposed to be mapped into the Intelligent Logic Network Layer of transputers.
However the user can declare data-parallel or sequential execution modes by
using the following declaration forms:

1. data-parallel module declaration

dapJlodule (nAme)
predicate..1
predicate.2

predicate.n
end.module (nAme)

2. sequential predicate declaration

seq((preclicc&te.JIAme)/(arity))

3. sequential module declaration

seq.module (nAme)
predicate..1
predicate.2

predicate.n
endJlodule (nAme)

The dapJlodules are compiled into OAP-OSG and are mapped and exe­
cuted on the OAP. The compiler is responsible for checking that within the
dap.Jllodules all the restrictions described in Section 3 are kept. Dap.modules
can call each other but they can not call sequential modules.

13

All the predicates defined either as sequential ones or in sequential mod­
ules are packed into SEQ operators without any parallel graph representation
and executed sequentially in the Sequential Processor Pool Layer. Sequential
modules can contain any kind of built-in predicates even contentious database
handling predicates. Sequential modules can call each other but they can not
call dap.Jllodules.

Figure 8: General view of DSG

In order to make clearer the meaning of the dap and sequential modules
let us consider the general view of DSG (Dataflow Search Graph) in Figure 8.
A DSG is a graph in which UBIFY / AID rings as supernodes are connected in
a tree. The branches of the tree are realised by OR (COR, RCOR) operators of
the DSG. If there is no sequential declaration in the program, the execution
mechanism is as follows:

1. Subgraphs connected by OR-branches can be executed in parallel (OR­
parallelism).

2. Subgraphs connected by UBIFY / AID rings are executed in pipeline AND­
parallelism based on token streams.

If a predicate is declared to be sequential, all of the subgraphs starting from
this predicate will be executed entirely sequentially, i.e. supedeaves are created

14

in the OSG (see Figure 8). Within a superleaf the execution mechanism is based
on the sequential WAM code instead of the parallel PPAM-2 code. However
these sequential superleaves will be executed either in OR-parallel or pipelined

AND-parallel way depending on their relative position in the OSG. Notice
that the data-parallel modules also represent superleaves, however within these
leaves the computation is parallel and based on the OAP-OSG.

6: Implementation of DAP-DSG on the DAP

To implement OSG on the OAP the following problems should be solved:

1. mapping of OSG into the physical processor space

2. communication of the operators

3. implementation of the interpreter cycles

6.1: Mapping

The OAP can be conceived as a grid of processors executing the same instruc­
tion on a plane of the data memory. The OAP works most efficiently when all
of its 1024 (or 4096) processors are processing relevant data elements in the
current memory plane. Therefore we need a mapping where identical operators
are placed on the same plane of the data memory.

The OSG is mapped into five logical planes:

1. OR-plane
2. UlIFY-plane
3. AID-plane
4. UlIT-plane
5. Built-in procedure plane

A logical plane can be built up from several physical planes if the number of
operators in the logical plane is greater than the actual number of processing
elements. However this distribution of the logical plane among the physical
planes is hidden from the user by the FORTRAN Plus Enhanced compiler of
the OAP [AMT 90].

6.2: Communication

The advantage of implementing the OSG on the OAP becomes obvious if we
study the parallel communication scheme. Just as the operators within a plane

IS

work in parallel, the movement of tokens placed on a common plane is executed
in parallel. Therefore the communication time of the operators depends only
on the number of token planes and is independent of the actual number of
tokens. As a consequence we have to choose a mapping which requires the
smallest number of token planes.

The possible communication schemes on the DAP are as follows:

1. Vertical Mode: communication between operators placed in the same
column. This mode requires no extra communication step, the source
operator directly can address the target operator.

2. Horizontal Neighbour Mode: communication between operators placed
on neighbouring positions in the same plane. This mode requires only a
single shift on the tokens. If all the operators of a plane communicate by
this mode, the only shift operation will move all the tokens in one step
to their target operators.

3. Horizontal Remote Mode: communication between operators placed
in the same plane but their vertical distances are different. There are
several alternative possibilities to realise this communication mode. Ob­
viously all of them are much more complicated than the first two methods.

4. Vertical/Horizontal Remote Mode: communication between oper­
ators placed in different planes and their vertical distances are varying.
Since the different planes have directly addressable unique names this
mode does not require more steps. than the Horizontal Remote Mode.

Obviously we need an operator mapping where most of the communica­
tions are based on the Vertical Mode or the Horizontal Neighbour Mode. We
show that a mapping is exists where only two token planes should be used in
Horizontal Remote Mode, one plane in Horizontal Neighbour Mode and all the
others can be used in the most efficient Vertical Mode. The rules for achieving
this mapping and an illustrative example are shown below.

6.3: Rules of Mapping

1. OR and its left-connected UUFY or UJIT operators are stored in the same
column. (Vertical Mode communication)

16

2. The last OR of an OR-chain can connect either

(a) a UlIFY and a UlIT operator

(b) a single righLconnected UlIFY operator

(c) a single righLconnected UlIT operator

All of these operators are placed in the same column (Vertical Mode
communication). In case (b) and (c) the left arc of the OR operator is
omitted. This kind of OR operator is called Dummy-OR (DOR).

3. Members of OR-chain are placed in the same plane and use Horizontal Re­
mote Mode communication by putting tokens either on the right..shift...oR
plane (for the request. in arcs) or on the left..shift plane (for the
reply. in2 arcs).

4. A UIIFY operator and the first AID operator of the body goals are placed
in neighbouring columns (AID is on the right of the UlIFY). The UlIFY
--+ AID communication is in Horizontal Neighbour Mode.

5. Members of an AID-chain are placed in neighbouring columns. They have
Horizontal Neighbour Mode communication.

6. Between a UIIFY operator and the last AID operator of the body com­
munication is based on Vertical/Horizontal Remote Mode. However the
same left..shift token plane can be used as for the OR operators.

7. AID operators and the connected UlIT or BUILTII operators are in the
same column (Vertical Mode communication).

8. AID operators must not be directly connected to a called UlIFY operator.
In order to avoid Vertical/Horizontal Remote Mode communication for
AID operators, a DOR operator is used in the column of the AID operator
and another one in the column of the called UXIFY operator.

The following simple example illustrates the rules of mapping (in general, pred­
icates may have arguments):

a :- b, c, d
a.
b.
c :- e.
d.
e.

The mapped OSG for the OAP is shown in Figure 9.

plain 1

plain 2

plain 3

plain 4

column
1

column
2

column
3

column
4

Figure 9: Mapping for the OAP

column
5

17

column
6

Notice that further optimisations can be applied for the mapping of the
example program. The subgraph of the c predicate can be shifted by one
column left making the mapping more dense and the communication faster.

7: Interpreting Prolog on the DAP

The interpretation is based on a loop consisting of the following steps.

Step 1 - All OR operators which have incoming tokens execute their gener­
alised transition function [Kacsuk 90]. Result tokens for UIIFY or UIIT opera­
tors are directly put on the corresponding input arcs of those operators. Result
tokens for OR operators are put either on the right..shift.DR plane (for the
request. in arcs) or on the left..shift plane (for the reply. in2 arcs).

Right shift of tokens in the right..Bhift.DR plane and left shift of tokens
in the left..Bhift plane (Horizontal Remote Mode communication).

Step 2 - Fireable UIIFY operators execute unification in parallel. Result
tokens for OR operators are directly put on the corresponding input arcs of those

18

operators. Result tokens for AID operators are placed on the right..shifLAID
token plane.

A single right shift on tokens in the right..shift..A1D token plane (Horizontal
Neighbour Mode communication).

Step 3 - Fireable AID operators work in parallel. Result tokens for U1IT,

BUILTU and DOR operators are directly placed on the target position (Vertical
Mode communication). Result tokens for neighbour AID operators are put on
the right..shift..A1D token plane. Tokens for U1IFY operators are placed on the
left..shift plane. These tokens will be shifted together with the ones targetted
for the reply. in2 arcs of OR operators.

Step 4 - Fireable U1IT operators produce output tokens in parallel. All of
these tokens are directly placed in the target position (Vertical Mode commu­
nication).

Step 5 - Fireable BUILTU operators produce output tokens in parallel. All
of these tokens are directly placed in the target position (Vertical Mode com­
munication).

We can see that, in each interpretation cycle, 2 Horizontal Remote Mode
and 1 Horizontal Neighbour Mode communications are executed. Since the
speed of the Horizontal Remote Mode is crucial for the whole interpretation
cycle special attention is needed in the implementation of this mode. Basically
two solutions can be considered:

1. Simple shift of tokens

2. Sorting of tokens

In case 1 the speed is proportional with the longest travel distant of the
current tokens. This can be fairly low as long as the tokens travel among
closely mapped OR operators. Therefore the mapping algorithm should place
connected OR operators as close as possible.

In case 2 the tokens would contain the target position instead of the target
distance. The sorting of tokens is based on the target position as key. The
speed of Batcher's bitonic sorting algorithm [Knuth 73] used on the DAP is
proportional with O(lo92n) where n is the number of processors. If the opera­
tor planes occupy all positions of the DAP 510, n is equal to 1024 independently
of the travel distances of the current tokens.

19

Therefore the bitonic sorting Illgorithm is worth using if the current largest
shift distance greater than 100, otherwise the simple shift is more advantageous.
In each cycle the Prolog interpreter tests the current largest shift distance by
the MAX library function of the DAP and dynamically takes the decision which
algorithm to be used.

8: Conclusions

Since the implementation of the model is in the experimental stage pedormance
results are not available yet. However it is obvious that highly parallel activity
in the DAP is only achievable if a large number of tokens are moving in the
DSG. If only one subprogram is used on the DAP it is unlikely to achieve
the desirable speed-up. Therefore as many DAP operators should be used
and mapped on the DAP as possible. The parallel and pipelined call of these
operators from the ILN transputer layer will hopefully result in a significant
speed-up.

The dataflow model and its implementation on the DAP /multi-transputer
system cannot be considered as a final answer for the question how to imple­
ment Prolog on massively parallel mixed architecture computers. However we
believe that the research presented in this paper demonstrates an important
and novel step towards this direction.

There remains a number of questions to be investigated further:

1. To polish the language side by introducing controLparallel, data_parallel
and sequential modules which could mutually be called.

2. Reducing communication needs at all levels (between computers, trans­
puters, operators).

3. Discovering new mapping algorithms for both the transputer and the
DAP side.

4. Eliminating the restrictions for the DAP side (particularly for handling
compound terms and recursive calls).

5. Designing lower level abstract machines for the Transputer and the DAP
side; compiling Prolog programs into the instruction sets of these abstract
machines. (For the transputer side the so-called Distributed Data Driven
Prolog Abstract Machine - 3DPAM - has been designed and partially
implemented.)

20

It would be also worth exploring the possibility of replacing the DAP by a
Connection Machine and comparing the implementations on the two machines.

9: Acknowledgements

This work was supported by an SERC research grant titled "To Study the Im­
plementation of Prolog on Mixed Architecture Parallel Computers". I would
like to particularly thank Prof. Heather Liddell for making possible and en­
couraging this research and Jonathan Hill for writing an experimental Prolog
compiler for this project.

21

References

[AMT 90] Fortran-Plus Language, (man 002), AMT DAP
Series, Active Memory Technology Ltd, 1990.

[Barklund et a188] Barklund, J. et. al. "KL1 in Condition Graphs on a
Connection Machine" , in Proceedings of the Inter-
national Conference on Fifth Generation Com-
puter Systems, 1988, pp 1041-1050

[Gupta & Jayaraman 90] Gupta, G. and Jayaraman, B. "Optimizing And­
Or Parallel Implementations", in Proceedings of
the North American Logic Programming Con-
ference, 1990, pp 605-623

[Ichiyoshi et a188] Ichiyoshi, N. et. al. "A New External Reference
Management and Distributed Unification for KL1",
in Proceedings of the International Conference
on Fifth Generation Computer Systems, 1988

[Kacsuk & Bale 87] Kacsuk, P. and Bale, A. "DAP Prolog: A Set­
Oriented Approach to Prolog", The Computer
Journal, Vol. 30, No.5, 1987, pp 393-403

[Kacsuk 90] Kacsuk, P. Execution Models of Prolog for Paral-
lel Computers, Pitman Publishing and MIT Press,
1990

[Kacsuk 91] Kacsuk, P. "A Parallel Prolog Abstract Machine
and its Multi-Transputer Implementation", The
Computer Journal, Vol. 34, No.1, 1991, pp 52-63

[Kale & Ramkumar 90] Kale, L. V. and Ramkumar, B. "Joining AND par­
allel Solutions in AND/OR parallel Systems", in
Proceedings of the North American Logic Pro-
gramming Conference, 1990, pp 624-643

[Knuth 73] Knuth, D. E. The Art of Computer Program-
ming, Vol. 3 (Sorting and Searching), Addison­
Wesley, 1973, p232

[Taylor et a187] Taylor, S., Safra, S. and Shapiro, E. CIA Parallel Im-'
plementation of Flat Concurrent Prolog", in Con-
current Prolog Collected Papers, ed. E. Shapiro,
MIT Press, 1987, pp 575-604

22

[Warren 83]

[Warren 87]

Warren, D. H. D. An Abstract Prolog Instruction
Set, Technical Note 309, SRI International, 1983

Warren, D. H. D. "The SRI Model of OR-Parallel
Execution of Prolog - Abstract Design and Im­
plementation Issues", in. Proceedings of the 1987
Symposium on Logic Programming, 1987, pp 92-
102

Speculative Computation and
Priorities in Concurrent Logic

Languages

Matthew Huntbach
mmhOdc8.qmw. ac. uk

Department of Computer Science
Queen Mary and Westfield College

University of London
Mile End Road
London El 4NS

Abstract

Speculative computation is a technique which enables us to obtain
extra amounts of parallelism from a problem by executing computations
which may only possibly be required (we "speculate- that they will be
required). We show how speculative computations may be expressed in
the concurrent logic languages, but indicate that in the current state of
these languages they are unsatisfadory as they do not allow us to express
priority between computations. We propose a simple priority operator
which overcomes this problem.

Keywords: Concurrent logic languages, speculative computation, pro­
cess priority, nondeterminism, parallel search.

1: Introduction

In this paper we address the problem of scheduling parallel computations in
concurrent logic languages. At present these languages offer only two choices

- either parallelism is unrestricted or it is non-existent. For many problems,

which fall under the heading speculative computation, neither of these options
is satisfactory. What is required is a way of expressing that, given spare parallel

processing capability, computations are to be run in parallel, but if there are

insufficient processors to give us all the parallelism we have expressed in our
program, certain computations are to be given priority.

24

2: Speculative Computation

In many problems the amount of parallelism available is minimal if we are not
prepared to risk any work which may turn out to be unnecessary. A simple
example is the search of a binary tree. If the node we are looking for occurs
in the left branch, there is no need to search the right branch. This will be

the case in particular if we have some heuristics which tell us we are more
'likely to find a satisfactory node towards the left of the tree. Such strongly
ordered trees are commonly found in artificial intelligence search problems
[Marsland & Campbell 82]. However, unless we are prepared to risk some un­

necessary work by searching a right branch in parallel with a left branch, we

will never exploit any parallel processing capacity we may have.

Speculative computing [Burton 85] refers to the principle of risking unnec­
essary work in order to make use of parallel processors which are available. In
an imperative or functional language, speculative computing will typically be
introduced when we have code of the form:

it A then B else C endif.

Rather than wait until A is evaluated, evaluation of both Band C commences
while computation of A is still underway.

It is easy to see how this naive introduction of parallelism into the example

could cause problems.

A major problem is that it may not be the case that additional processors
actually are available. In many cases, programs are written using virtual paral-
lelism [Burton & Huntbach 84], in which the amount of parallelism expressed
is much more than is physically available, and it is left to the underlying system

to decide exactly when computations expressed as runnable in parallel actually
are run in parallel. Without real parallelism being available, computations ex­
pressed as runnable in parallel will actually execute on a single processor using
some form of time-sharing.

If in our above example, A, Band C were all run on the same processor, any

time spent on evaluating whichever of Band C is not needed will be wasted. In
the worst case the unneeded computation is non-terminating, and if for some
reason it is given priority over the other computations the whole computation
will never terminate.

So if A, Band C were constrained to run on one processor, we would prefer
that priority were given to A. If only two processors were available, we would

25

have a more difficult situation. If we believe it is more likely that A will evaluate
to true, we would prefer to use the one spare processor to evaluate B, similarly

we would prefer to give priority to C if A is likely to evaluate to false.

Further problems are caused by communication costs. If communication
costs are high and the amount of work involved in· evaluating B is much less

than that involved in evaluating C, we might prefer to move C to be evaluated
on another processor in order to ensure a better distribution of work, even if

'we think A is likely to return true. If the amount of time required to evaluate
B is less than the amount of time required to send the result of B back from
another processor we would save time over the whole computation.

If it makes sense to run both Band C in parallel with A, and the proces­
sors to do so are available, once the result of A is available it is necessary to
kill computation of whichever of Band C is unnecessary. It is essential that

the mechanism to kill off unnecessary computations has priority over those
computations [Grit & Page 81].

3: Speculative Computation in Concurrent
Logic

The code

it A then B else C endit

is represented in Prolog by clauses of the form:

P. A, !, B.
P '- C.

Let us assume that P, A, Band C share variables, so the above is shorthand for:

P(X1,
P(X1,

. . . , . . . ,
Xn) :- A(X1,
Xn) :- C(X1,

... , ... ,
Xn), !,
Xn) .

B(X1, ... , Xn) .

In a non-flat concurrent logic language, such as full Parlog [Clark & Gregory
86], the conditional may be represented by:

26

P .- A : B.
P .- notA : C.

Here, notA is a predicate which fails whenever A succeeds and vice versa. The
':' may be thought of as a parallel version of Prolog's cut. It is mandatory in all

clauses in concurrent logic languages, causing all computations to commit to
a particular clause, though implicit in clauses where no goals precede it. The
calculation of A and notA can proceed in parallel. Given a clause of the form

P :- A : E, F.

computation of E and F may not start until computation of A has terminated,
but may then proceed in parallel.

In fact, the concurrent logic languages have proved much easier to imple­

ment if they are restricted to their flat versions where the goals before the ':'
consist only of system primitives [Mierowsky et aI8S]. In the above example,
it may be that A and notA can in fact be expressed using system primitives and
pattern matching in the clause heads. If not, a flat version can be programmed
as follows:

P :- !(Flag), Pl(Flag).

P1(true) :- B.
P1(false) : - c.

Here, Flag is an extra variable, added to !. In the case where A previously
would have terminated successfully, the code for A is written so that computa­
tion terminates and binds Flag to true. In the case where previously A would

have failed, it terminates and binds Flag to false.

The concurrent logic languages are constrained so that no variable may be
bound by matching a goal to a clause head. Rather, clause choice suspends
until variables in the goal become bound sufficiently to allow clause choice

to take place without variable binding. The only way variables may become
bound here is through the system binding primitive, which we shall write : =
and through one or two other primitives such as the arithmetic is. ! : = x is
a goal which binds variable! to x.

Thus in the above example, although !(Flag) and P1(Flag) are expressed
as being computed in parallel, P1(Flag) will not commit to a clause until

27

!(Flag) has finished computation and bound Flag to true or false.

Let us assume that the output of the computation is returned in a single
variable, Res. Then we may write the conditional:

peRes) :- !(Flag), P1(Flag,Res).

P1(true,Res) :- B(Res).
P1(false,Res) :- CeRes).

In order to gain our speculative computation, we add a third clause for P1:

P1(Flag,Res) :- var(Flag): B(ResB), C(Re.C),
combine(Flag,ResB,ResC,Res).

Here, var is a system primitive which fails unless its argument is an unbound

variable. Thus, P1 may be thought of as a clause which will not wait for the
value of Flag. Rather it goes ahead and starts computation of Band C. The

call to combine returns the appropriate answer - the clauses for combine are:

combine(true,ResB,ResC,Res) :- Res := ResB.
combine(false,ResB,ResC,Res) :- Res .- ResC.

The effect of this is that combine (Flag, ResB , ResC, Res) remains suspended

until Flag becomes bound, when it assigns ReaB or ResC to Res as appropriate.
If the computation whose result is required has not finished, it will bind Res
to its result variable, causing Res to be bound when the result is computed.

The problem with this solution is that it does not kill off the unnecessary
computation once Flag has been set. This can be overcome by a termination
variable technique. The idea is that all computations within a speculative com­
putation share a variable. They may only spawn further computations while
this variable is unbound. When a computation is found to be unnecessary, its
termination variable is bound, causing it to halt. Each clause for the computa­
tion contains a var test for the termination variable, and there is an additional
clause with no subgoals which is the only clause to which computation may
commit when the termination variable is bound.

This gives us the following code for the conditional expression:

28

P(Res) :- !(Flag), P1(Flag,Res).

Pl(true) :­
P1 (false) :­
Pl(Flag) :-

var(Flag)

B(Term,Res).
C(Term,Res).

B(TermB,ResB), C(TermC,ResC),
combine(Flag,TermB,TermC,ResB,ResC,Res).

combine(true,TermB,TermC,ResB,ResC,Res) :-
Res := ResB, TermC := done.

combine(false,TermB,TermC,ResB,ResC,Res) :-
Res := ResC, TermB := done.

Given that the clauses for B took the form:

B(Res) .- Body1

B(Res) .- Body2

they would be replaced by:

B(done,Res) .
B(Term,Res) .- var(Term) Body1 (Term) .

B(Term,Res) .- var(Term) Body2(Term) .

with similar modifications being done to the clauses for the bodies, and to the

clauses for C.

In this case, combine has the additional job of setting the termination

variable for the unnecessary computation when it is awakened by the binding

of Flag.

Given this coding, we need to be able to express that the goal A(Flag) has

priority over Pl(Flag,Res), since if we only have one processor available it.

makes no sense to start computation of the latter before computation of the

former has finished. However, we do not want actually to restrict P1 (Flag,Res)

to commence execution only when !(Flag) has terminated, since that would

give us no opportunity to use parallel processors if they were available.

29

Similarly, we would like to express a preference between B(TermB,ResB)

and C (TermC , ResC), because if only one processor is available, we would like

the one which is more likely to be needed to execute. We would also like

combine(Flag,TermB,TermC,ResB,ResC,Res)

to have priority over both to ensure that unnecessary computations are halted
as soon as they are known to be unnecessary.

It may be noted that our speculative computation clause uses the technique

of simulating OR-parallelism by AND-parallelism [Codish &; Shapiro 87]. In
fact, OR-parallelism may be considered a form of speculative computation,
since it does several OR-computations in parallel when only one will be needed.

4: Speculative Computing and
Non-Determinacy in Concurrent Logic

An alternative form of speculative computing occurs when we allow non-deter­

minate computations. It has been proposed, for example, that non-determinacy
could be introduced in a functional language by a construct amb [McCarthy 63]
where amb(exp1, exp2) returns non-deterministically the value of the expres­

sion exp1 or the expression exp2. If one of its arguments does not correctly

terminate, the value of the other is returned.

A simple version of this can be written in a concurrent logic language:

amb(Res) :- exp1(Res1), exp2(Res2), choose(Res1,Res2,Res).

choose(Res1,Res2,Res) .- Res1 # none
choose(Res1,Res2,Res) .- Res2 # none
choose(none,none,Res) .-

Res := Res1.
Res := Res2.
Res := none.

Again, we assume that in practice there are further variables shared between
the computations. The result of a computation is returned in the variable

shown; if a computation does not have a correct result, this variable is bound
to the constant none. The expression A # x, where A is a variable and x is a
constant, is to be read as eeA is not equal to x". If A is unbound, it will suspend

until A becomes bound. So choose remains suspended until either of exp1 or
exp2 returns a valid result, or both return none.

The primitive # is available in most of the concurrent logic languages,

30

though the precise symbol used varies.

The above version will not terminate an unnecessary (and possibly infinite)
computation. This can again be done using termination variables:

amb(Res) :- exp1(Term1.Res1). exp2(Term2.Res2).
choose(Term1.Term2.Res1.Res2.Res).

choose(Term1.Term2.Res1.Res2.Res) :-
Res1 =1= none: Res:= Res1. Term2 .- done.

choose(Term1.Term2.Res1.Res2.Res) :-
Res2 =1= none: Res:= Res2. Term1 := done.

choose(none.none.Res):- Res:= none.

Here, we would like computation of whichever of exp1 and exp2 is more likely
to give a result to be given priority. The exception is that if we know one could
result in an infinite computation, but the other will definitely terminate, we
should always give priority to the one which will terminate. choose should be
given priority over both exp1 and exp2 to ensure unnecessary computations
are cut oft' as soon as they are known to be so.

Computing both exp1 and exp2 in parallel is speculative since the result of
only one may be needed.

5: Binary Tree Search

Using similar methods to those outlined above, let us consider the search of a
binary tree. Any node in the tree mayor may not be a goal node. A node is
either an internal node, in which case it has both a left and right binary tree as
descendants, or it is a leaf node, in which case it has no descendants. We may
assume the binary tree is constructed dynamically and thus make considerable
savings by not expanding the parts we do not need to consider.

The following program will implement binary tree search:

.earch(lode.done.O) .
• earch(lode.I.O) :- var(I) i.goal(lode.Flag) •

• earch1(Flag.lode.I.O).

search1(T.lode.done.O).
search1(true.lode.I.O) :- yar(I)
search1(false.lode.I.O) :- var(I)

search2(T.lode.done.O).
search2(true.lode.I.O) :- yar(I)
search2(false.lode.I.O) :- var(I)

choose(IL.none.IR.none.I.O) .-

31

valof(lode.O).
isleaf(lode.Flag).
search2(Flag.lode.I.O).

o := none.
left(lode.Left).
right(lode.Right).
search(Left.IL.OL).
search(Right.IR.OR).
choose(IL.OL.IR.OR.I.O).

choose(IL.Sol.IR.OR.I.O)·- Sol ~ none
o := none.
I~ := done.
a := Sol.
IL := done.
o := Sol.
IL := done.
IR := done.

choose(IL.OL.IR,Sol,I,O)·- Sol ~ none

choose(IL.OL.IR.OR.done.O) :-

Here, isgoal and isleaf are tests for goal and leaf nodes respectively, setting
boolean flags as appropriate. left gives the left branch of a node and right
gives its right branch. yalof gives the value of a node, which is returned as its
solution if the node is a goal.

A search goal has three arguments. The first is the node it is searching.

The second is a terminator variable which may be considered as an input - if
done is input the search terminates. The third argument is used for the output

of the search - if no goal is found in the subtree rooted in the input node, it
outputs none; otherwise, its value is the value of a goal in that subtree.

If a search goal splits into searches of its left and right subtrees, it leaves
behind a choose goal, which is initially suspended. Should choose receive
a solution from either the left or right subtree, it passes up the solution as
output, and passes down done to the other subtree to terminate it. Should
choose receive done as input, it passes done to both subtrees terminating
their search at whatever point it may have reached.

A point to note is that this program does not exploit every possible specu­
lative computation. The dependency of search1 and search2 on their input
flags means that no attempt will be made to produce and search the left and

right subtrees of a node until it has been ascertained that the node is neither
a goal node nor a leaf node.

32

If there is more than one goal in the tree, then which value is returned is
non-deterministic. The non-determinacy is expressed by the second and third

clauses for choose - if both the second and fourth arguments to choose are
bound to values other than none, choose will commit non-deterministically to
one or the other of these clauses, passing on either of the values. In general,
non-deterministic constructs in the concurrent logic languages commit to the

first clause to which commitment is possible temporally, thus choose will pass

.on whichever goal value it receives first.

All the previous problems we mentioned over scheduling occur with this
binary tree search. In the absence of real parallelism the tree may in fact be
searched in breadth-first or depth-first order, right-to-Ieft or left-to-right, or any
other order depending on the underlying scheduling of the language (which is
not defined for most of the concurrent logic languages). We could control the
scheduling only by removing the potential parallelism. There is no guarantee
that choose will have priority over further searching, so a message to cut off

further search of a tree may be delayed while that tree is further expanded.

6: A Priority Operator

We propose to solve the scheduling problem by the introduction of a priority
operator. This is similar to the priority operator Burton has proposed for func­

tionallanguages [Burton 85]. A priority call takes the form priority(P. Goal),
where P is an integer, or a variable which will become bound to an integer, and
Goal is a goal. It is thus a form of meta-call. Any goal not enclosed within a
priority call is termed mandatory, and has in effect infinite priority.

Given a number of goals on a processor, the processor will always reduce a
mandatory goal if a non-suspended one is available for reduction. Otherwise
it will reduce the highest priority non-suspended priority goal. For maximum

flexibility, the priority should be attached only to the reduction and not to
the subgoals. If it were intended for the sub goals to share in the priority, this
could be programmed in by passing the priority as an argument to them and
enclosing them within priority calls.

The priority is applicable only when no spare processors are available. Low
priority goals could of course be reduced if there were sufficient processors
to do so. On a distributed memory system there would need to be some
algorithm for mapping goals to processors to ensure a good distribution of work

33

(some consideration of this problem, and some simulation results are given in

[Huntbach & Burton 88]).

For example, the following could be used to obtain a binary tree search,

which in the absence of spare processors defaults to left-to-right breadth-first

search (the value of P in the initial call must be 0):

search(P,lode,done,O).
search(P,lode,I,O) :- var(I) isgoal(lode,Flag),

search1(P,Flag,lode,I,O).

search1(P,T,lode,done,O).
search1(P,true,lode,I,O) :­

var(I) : valot(lode,O).
search1(P,talse,lode,I,O) :-

var(I) : isleat(lode,Flag),
search2(P,Flag,lode,I,O).

search2(P,T,lode,done,O).
search2(P,true,lode,I,O) :­

var(I) : a := none.
search2(P,talse,lode,I,O) :-

var(I) : lett(lode,Left),
right(lode,Right),
PL is P*2-1, PR is P*2-2,
priority(PL,search(PL,Left,IL,OL»,
priority(PR,search(PR,Right,IR,OR»,
choose(IL,OL,IR,OR,I,O).

choose(IL,none,IR,none,I,O) '-
choose(IL,Sol,IR,OR,I,O)'- Sol I none

choose(IL,OL,IR,Sol,I,O)'- Sol I none

choose(IL,OL,IR,OR,done,O) :-

a := none.
IR := done,
a := Sol.
IL := done,
a := Sol.
IL .- done,
IR := done.

Other settings of the priorities may be used to obtain other default search

orders. Artificial intelligence applications could use some sort of heuristic value

(in a further paper we consider the application of the priority operator to

branch-and-bound search in concurrent logic languages [Huntbach 90]).

Note that since the choose goal is mandatory, passing on termination values

will always have priority over further expansion of the tree. Search of any node

which is neither a goal nor a leaf will eventually reduce to a choose goal and

two search goals enclosed within priority operators, so the two occurrences of

priority are enough to completely schedule the tree expansion in the absence

34

of real parallelism.
The program would still be non-deterministic if run on a parallel archi­

tecture, since this gives the opportunity for a low priority goal to be exe­

cuted before a higher priority one. Consider the case where nodes A and B

have the highest priority on processor I, and node C is the highest priority

node on processor 2, the nodes having priorities P A, PB and Pc respectively,

P A > PB > PC' In this case, if both Band C are goal nodes, C will be
searched before B and the value of C returned as the result. If A, Band C

were all on the same processor, B would be searched before C and the value of
B would be returned as the result.

Given the problem of load-balancing in a distributed system, it may also
be useful allow the user to express which goal should be ofHoaded to another
processor should there be a choice of several. This could be done using an
offload meta-call similar to priority. It ought to be possible to indicate
that two computations, although running as co-routines, should always run on

the same processor, that is neither should be ofHoaded. Clearly there is no
point in running computations on separate processors if they co-routine but
never actually execute simultaneously - we will just lose out because of time

delay on interprocessor communication.

An alternative approach to our use of annotations to control scheduling and
computation to processor mapping is the use of a meta-language. Foster has
considered this in detail for the concurrent logic languages [Foster 88].

7: Conclusions

The problem of scheduling parallel computations is a serious one, which has
so far not been given much attention by researchers into concurrent logic lan­
guages. Rather, scheduling has been left as an implementation detail.

We have given some simple examples which demonstrate that the lack of
user control over scheduling could have a dramatic effect on the efficiency of

these languages, in the worse case leaving a choice between a program which
will not exploit parallel processors at all and one which may not terminate.

We have proposed the introduction of a simple priority primitive into the
concurrent logic languages, which is used to indicate which computation should
be given preference when the parallel processing capacity has become saturated
and computations expressed as executable in parallel are in fact sharing pro­
cessors.

References

[Burton 85]

[Burton &: Huntbach 84]

[Clark &: Gregory 86]

[Codish &: Shapiro 87]

[Foster 88]

[Grit &: Page 81]

[Huntbach &: Burton 88]

[Huntbach 90]

35

Burton, F. W. "Speculative computation, paral­
lelism and functional programming." IEEE Trans.
Computers C-3-4, 12 pp.1190-1193.

Burton, F. W. and Huntbach, M. M. "Virtual tree
machines." IEEE Trans. on Computers, C-33, 3
pp.278--280.

Clark, K. L. and Gregory, S "PARLOG: parallel
programming in logic." ACM Trans. Prog. Lang.
Sys. 8, 1 pp.1-49.

Codish, M. and Shapiro, E. "Compiling OR­
parallelism into AND-parallelism." New Gener­
ation Computing 5, 1 pp.45-61.

Foster, 1. T. Parallelizing a Computational Bi-
ology Program. Technical Report, ParIog Group,
Dept. of Computing, Imperial College, University
of London.

Grit, D. H. and Page, R. L. "Deleting irrelevant
tasks in an expression-oriented multiprocessor sys­
tem." ACM Trans. Prog. Lang. and Sys. 3, 1
pp.49-59.

Huntbach, M. M. and Burton, F. W. "Alpha-beta
search on virtual tree machines." Information Sci-
ences -4-4, pp.3-17.

Huntbach, M. M. Parallel Branch-and-Bound
Search in Parlog. Technical Report 519, Depart­
ment of Computer Science, Queen Mary and West­
field College, University of London.

[Marsland &: Campbell 82] Marsland, T. A. and Campbell, M. "Parallel search
of strongly ordered game trees." Computing Sur-
veys 1-4, 4 pp.533-551.

[McCarthy 63]

[Mierowsky et al 85]

McCarthy, J. "A basic mathematical the­
ory of computation." In Computer Program-
ming and Formal Systems, eds. P.Braffort and
D.Hirschberg, pp.33-70, North Holland.

Mierowsky, C., Taylor, S., Levy, J. and Safra, M.
The Design and Implementation of Flat Con-
current Prolog. Tech. Report CS85-09, Dept. of
Applied Mathematics, Weizmann Institute of Sci­
ence, Israel.

Distributed Logic Programming
Zdravko Markov Christo Dichev

Institute of Informatics
Bulgarian Academy of Sciences
Acad.G.Bonchev St. Block 29A,

1113 Sofia,
Bulgaria

Abstract
This paper describes an implementation of deductive inference in a

network programming environment called Net-Clause Language (NCL).
NCL is designed for building network models, without centralised con­
trol, using term unification as a basic processing mechanism. The main
feature of NCL is distributed and data-driven control, which in turn
allows the implementation of data-driven logical inference. The NCL
logical inference is applicable to a more general form of formula than the
traditional logic programming, and its procedural semantics is expressed
in terms of non-clausal resolution.

1: Introduction

Most of the network models used in AI are just notations (e.g. semantic net­
works). The real working network systems are mainly connected with Parallel
Distributed Processing (PDP), well developed in the field of numeric compu­
tation. Even modern connectionism, which attempts to generalise the PDP
paradigm is also based on numeric computation. Opposed to numeric compu­
tation are the symbolic approaches in AI - the methods for problem solving,
including automatic deduction. There is another research direction - integrat­
ing both approaches. A considerable part of this research is in the field of
Logic Programming. PARLOG [Gregory 87], Concurrent Prolog [Shapiro 82]
and GHC [Udea 85] are typical examples of applying PDP approaches in a
pure symbolic field. However the main purpose of these works is not integrat­
ing symbolic and parallel computation in a consistent way, rather improving
the efficiency of the implementations. An interesting approach is proposed by
Jorrand in [Jorrand 87] and in some later works. Logic programs are repre­
sented as networks of communicating by unification agents working in parallel.

37

This approach preserves the original Herbrand semantics of Logic Programs
without introducing any additional control means (used in the parallel Prolog
implementations). This is a formal and elegant way of introducing a new com­
putational paradigm - computation by communication. However this approach
is difficult to implement and use in practice.

The present paper describes a PDP approach to Logic Programming. The
issue of parallelism is not discussed, rather the emphasis is on the distribut­
,edness, which is one of the basic features of the described formalism. The
main contribution of this paper is showing a way of implementing logical in­
ference in a network environment, called Net-Clause language (NCL). The
basis of NCL is the network formalism presented in [Markov 89], where it
was considered as an extension of logic programming. Its applications in
the field of graphical object representation and as a connectionist modeling
tool are shown there. In the present paper the interpretation of NCL as
a logical reasoning scheme is shown. Various aspects of NCL are also dis­
cussed in [Markov & Dichev 90, Markov et al90a, Markov et aI90b]. The ap­
plication of NCL in the field of natural language processing in discussed in
[Markov et al90b, Sinapova 90].

2: An overview of the Net-Clause Language

Syntactically the Net-Clause language (NCL) is an extension of the standard
Prolog. Its semantics however is aimed at modeling graph like structures (net­
works), consisting of nodes and links. The nodes specify procedures unifying
terms, and the links are channels along which the terms are propagated. The
language is designed for describing distributed computation schemes, without
centralised control using unification as a basic data processing mechanism.

The basic constructors of NCL programs are the net-clauses. A net-clause is
a sequence of nodes, syntactically represented as structures (complex terms),
separated by the delimiter ":". The network links are implicitly defined by
shared variables among different nodes in a net-clause. The variables in NCL
are called net-variables.

The NCL networks are built out of two types of nodes - free nodes and
procedural nodes. The free nodes are structures (in the form of Prolog facts)
used to access net-variables, inside and outside the net-clause. The procedural
nodes are the active elements in the network. Procedures unifying terms are
associated to the procedural nodes. The procedures are activated under certain

38

conditions, defined locally in each node. Thus the control in NCL is distributed.
It is based on the unification procedure, which is also the basic data processing
mechanism in the language. Since there are no explicit control means in the
language the control in NCL is data-driven. Generally when unifying net­
variables two possible results can occur: binding net-variables to non-variable
terms and sharing net-variables. These possibilities define the two control
schemes in NCL. Each one of them is specified by a particular type of procedural
node. We describe briefly only the first control scheme - spreading activation,
since the second one (activation by need) does not relate to the connectionist
features of NCL. It is described elsewhere (e.g. (Markov et a190b)) in the
framework of default reasoning.

2.1: Spreading Activation in NCL

The spreading activation control scheme is defined by procedural nodes written
in the following syntax:

node(X1, ... ,Xn,N, (procedure})

The purpose of the node procedure is to unify terms, particularly to bind vari­
ables, which in turn could further propagate both data (terms) and control
(activation) among other nodes in the network. The node procedure is also an
interface to the Prolog system, which is an environment for NCL, i.e. Prolog
built-in procedures and predicates can be called too. M is an integer number
and its semantics is to define a threshold, determining the amount of data
required to activate the procedure. Xi are net-variables which serve as chan­
nels for term propagating. They can be used both as excitatory links and as
inhibitory links for the activation of the procedure. The excitatory links are
represented as simple (ordinary) variables and the inhibitory links are repre­
sented as negated variables (written as -Xi). The procedure is activated if the
difference between the number of the bound simple variables and the number
of the bound negated ones is equal to M. When defining a spreading activation
node the condition M>O is required. This ensures that the procedure can not
be activated "by definition", i.e. at least one variable binding is needed for
that purpose. Actually binding a simple variable decrements M, and binding a
negated one increments it, thus the procedure is activated when M=O. In such
a way M can be used to indicate dynamically the number of bound Xi.

39

To illustrate the features of the spreading activation control scheme let us
discuss a simple example. Consider the problem of polyhedron recognition. A
solution of this problem in Prolog is described in [Markov 89, Markov & Risse 88].
A polyhedron can be considered as an attributed graph, represented as a list
of edges, each one in the following form:

edge(Vertex1.Vertex2.S1ope.Length)

Thus an instance of a parallelogram can be represented by the following list:

[edge(1.2.0.20). edge(2.3.30.60).
edge(3.4.0.20). edge(4.1.30.60)]

An important feature of this representation is the possibility to define a class
of figures, using variables instead of fixed values standing for the vertex names
and attributes. Thus the class of all parallelograms is represented as follows:

[edge(A.B.S1.L1). edge(B.C.S2.L2).
edge(C.D.S1.L1). edge(D.E.S2.L2)]

Using variables as edge attributes ensures that the class representation is free
of any specific geometric properties as size, orientation, etc.

Using this representation the problem of polyhedron recognition comes to
the problem of graph isomorphism. This in turn is solved easily (but not ef­
ficiently) by a simple recursive predicate, checking whether a list is a sublist
of another list. The pure subgraph matching problem is NP-complete. How­
ever, in some cases a proper representation may be found to make the graph
matching algorithm applicable in practice. The aim is to minimise the num­
ber of the backtracking steps occurring in the "bad" ordering combinations.
The use of attributes in the graph improves the efficiency as it is shown in
[Markov & Risse 88]. However, there is a "second order" problem, which ap­
pears where more than one class is used. The overall efficiency in such case
depends very much on the order of the selected classes to be recognised, since
the matchings between the instance and each of the classes is tested sequen­
tially. Yet another disadvantage is that more complex geometric properties
(e.g. perpendicularity) cannot be directly represented as graph attributes.

Let us discuss now the NCL solution of the above stated problem. Consider
the following net-clause program:

40

1* Free lodes - letvork Inputs *1
edge(A,B,S1,L1):
edge(B,C,S2,L1):
edge(C,D,S1,L1):
edge(D,A,S2,L1):
edge(B,E,S2,L2):
edge(E,F,S1,L1):
edge(F,A,S2,L2):
edge(E,G,S3,L3):
edge(G,A,S4,L4):

1* General case of a four-sided figure *1
node (A , B, E, G, 4, fig(four ..side..figure)) :

1* Hidden node checking perpendicularity *1
node(S1,S2,2,perp(S1,S2,P»:

1* lon-perpendicular figures *1
node(A,B,E,F,-P,4,fig(parallelogram»:
node(A,B,C,D,-P,4,fig(rhombus»:

1* Perpendicular figures *1
node(A,B,E,F,P,6,fig(rectangular»:
node(A,B,C,D,P,6,fig(square»:

1* Free lode - letvork Output *1
fig(Fig).

1* Procedure calculating perpendicularity *1
perp(X,Y,ok) :- 0 is (X-Y) mod 90, !.
perp(_, _, _) .

The program describes a network for recognition of planar four-side geometric
figures. The figures are represented as a collection of edges with parameters -
written as free nodes. The shared variables in these nodes represent the com­
mon vertices and the geometric constraints (parallel and same-length edges).
The variables, grouped in the spreading activation nodes, represent a "part-of"
hierarchy. Thus, unifying the free nodes with the nodes of a particular instance,
the bound net-variables activate the corresponding class of figures.

The example shows a way of using hidden nodes in such networks. Node 2 is
activated when the net-variables SI and S2 (representing the slopes of the cor­
responding edges) are bound. H the condition for perpendicularity is present,
then the procedure "perp" binds the net-variable P, thus activating the "per-

41

pendicular" classes and suppressing the "non-perpendicular" ones (because of
the inhibitory link -Pl. The network is activated by specifying the edges of
sample figures as a net-clause query. The corresponding class is obtained by
the free node "fig". Some examples of the network activation are shown below:

<- edge(l,2,O,20), edge(2,3,46,30),
edge(3,4,O,20), edge(4,l,46,30), fig(l).

l=parallelogram

yes
<- edge(l,2,O,20), edge(2,3,90,20),

edge(3,4,O,20), edge(4,l,90,20), fig(square).

yes
<- edge(a,b,O,20), edge(b,c,46,30),

edge(c,d,10,40), edge(d,a,60,60), fig(l).
X=four..side...1igure

yes

2.2: Lazy Unification

The basic feature of the net-variable is the property to be single assignment.
In the network terminology this means that the net-variable is a channel which
can propagate successfully only one item of data (term). Thus the spreading
activation node can work only once (not taking into account the alternative
solutions). This makes the NCL network in a sense "fiat", i.e. each net-clause
can process only one pattern of data and if we have many of them several copies
of the same net-clause are required. This property is typical for connectionism,
but it is quite far from the symbolic approaches (e.g. the Prolog clauses are
patterns for data processing).

To fill the gap a special kind of net-variable is introduced, called lazy net­
variable. It realises the concept of multiple assignment, keeping in the same
time the property of logic variable. Two types of lazy net-variables are imple-'
mented in NCL. The lazy net-variables of type 1 has three basic features:

• The lazy variable is never bound. It only propagates terms to other
variables by means of activating procedures in the spreading activation
nodes.

42

• The unification with lazy variables always succeeds.

• The lazy variables propagates terms only when all its occurrences prop­

agate unifiable terms.

The lazy net-variables of type 2 has only the last feature. Thus it may be
bound and hence its binding may fail. The unification involving lazy variables
is called lazy unification. The implementation of the lazy unification is based
on the concepts of streams and coroutines borrowed from the lazy evaluation

in functional programming [Friedman & Wise 76, Henderson & Morris 76].

The lazy net-variables are specified by the procedure lazy(N), where N is
the lazy variable type. After specifying the query

<-lazy(l) .

the variables of all subsequently loaded in the database net-clauses are of the
corresponding type. To illustrate the features of lazy variables (type 1) consider
the following example.

<- lazy(1).
a(I): b(I): node(I,1,(write(I),nl».

<- a(a(1,2»,b(1),b(2),a(f(I»,b(f(z»,b(a(1,Y»,a(2).
f(z)
a(1,2)
2
I=z
Y=2

A natural interpretation of the above net-clause program is a stream one. The
above sequence of data represents two streams of terms directed to the free
nodes a and b. The net-variable X plays the role of a channel along which the
terms from both streams are unified. If two terms are unified successfully the
procedure in the corresponding spreading activation node is activated. The
terms can arrive at the free nodes in an arbitrary sequence i.e. not in unifiable
pairs. So the channel X synchronises the streams, i.e. performs an incremental
communication between them. One step in this incremental process is one
unification with a free node. A lazy variable can occur in more than two free
nodes, i.e. it can synchronise more than two streams. In this case the lazy
variable finds the most general unifier (mgu) of the terms from all streams.

The implementation of the first type of the lazy unification mechanism is

43

based on the use of a local database. Such database is provided for each free
node with lazy variables of type 1. It is a dynamic data structure existing until
the net-clause is active. The local database stores all bindings of the variables
in a free node for further unification with the terms stored in the other local
databases. The access to such databases is uniform - storing and retrieving
data based only on the unification. Here is an example of using lazy variables
as a dynamic database:

<- lazy(1).
a(Key ,Data) : [] .

<- a(1.data1).a(2.data2),a(3,data3). /* Storing data */
a(2.I).a(1.Y). /* Accessing data */

I=data2
Y=data1

The implementation of the lazy net-variables of type 1 based on the stream
concept has a disadvantage in respect to some Prolog "classics". This is the
possibility to define several free nodes with same functors and to use backtrack­
ing to access the nodes other than the first one. This is the case in the geometric
figure example from Section 2.1. The sample edges are unified with the network
inputs due to the backtracking occurring when some net-variables are bound.
This is not possible using lazy net-variable of type 1. Actually the concepts
of streams and backtracking are counterparts in sense of organisation of com­
putational process and hence cannot be combined in a single mechanism. The
"baclttrackability" of the free nodes can be achieved using lazy net-variables of
type 2. They may be bound and hence may cause backtracking.

3: Logical Inference in NCL

NCL is a term manipulation language based on unification, a common feature
of most deductive inference systems. In Section 3.1. an interpretation of a
subset of NCL in the framework of data- driven inference (forward chaining) is
shown. Furthermore unlike the standard Logic Programming, NCL allows the
set of used formulae to be extended to a class of formulae in non-clausal form
(shown in Section 3.2). From logical point of view a net-clause is a conjunction
of Horn clauses, where the scope of the universal quantifiers is extended to all

44

clauses constituting the net-clause. Thus a net-clause allows communication
links to be established between several Horn clauses through the shared vari­
ables. Therefore the procedural semantics of NCL can be expressed in terms

of non-clausal resolution [Murray 82]. Thus considering its logical foundations
NCL is an extension of the languages based on SLD-resolution [Lloyd 84].

,3.1: Data-driven inference in NCL

In this Section the basic principles of the NCL implementation of data-driven
inference in Horn clause logic are described. The further discussion is based on
a correspondence between Horn clauses and a subset of net-clauses (excluding
default nodes). Generally we have three types of Horn clauses. They can be
translated into net-clauses applying the following transformation rules:

1. Each program clause is translated into a net-clause, where the clause head
is represented by a spreading activation node and the clause body - by a
collection of free nodes. Variables Xl, ... ,Xm are all variables occurring

in the subgoals AI,. .. ,Ap.

p(Yl •...• Yn) node(Xl •...• Xm.m.p(Yl •...• Yn»:
<-- Al •...• Ap <===> U:

Ap.

2. The goal clause is represented as a net-clause built out of free nodes,
which can share variables.

<-- Bl •...• Bn <===> Bl: ... Bn.

3. The unit clauses are represented as data (NCL query), which activates the
net-clause program. Different net-clauses communicate through the uni­
fication between procedural nodes and free nodes, and the whole process
is governed by the spreading activation scheme.

Cl <--

<===> <- Cl •...• Cn.

Cn <--

45

To illustrate the above correspondence let us discuss an example. Consider
the following Horn clause program:

I. 1 .1 p(a,b)
I. 2 .1 p(e,b)
I. 3 .1 p(I,Z)
I. 4 .1 p(I,Y)
I. 6 .1

<-­
<--
<-- p(I,Y), p(Y,Z)
<-- p(Y,I)
<-- p(a,e)

Program 1.

Applying the above rules this program is transformed into the following net­
clause program (the Hom clauses and net-clauses are numbered correspond­
ingly).

I. 1,2 .1 <- p(a,b),p(e,b).
I. 3.1 node(I,Y,Z,3,p(I,Z»: p(I,Y) p(Y,Z).
1.4.1 node(I,Y,2,p(I,Y»: p(Y,I).
1.6.1 p(a,e):[].

Program 2.

Program 1 has clear declarative meaning, however there is no Prolog system,
which is able to find a refutation for it. This is because of the fixed computation
and search rules used in the practical implementations of the SLD-resolution.
Program 2 runs successfully on the net-clause interpreter. It realises data­
driven inference directed from the unit clauses to the goal clause. The refu­
tation tree of the corresponding resolution procedure is shown in Figure 1. It
is a kind of resolution where the refutation procedure is initiated by the unit
clause resolution. In fact the data, which represent the set of unit positive
clauses is the input for the resolution process. So, the data-driven inference
can be interpreted in terms of unit resolution [Chang & Lee 73, Stickel 86].

Using clauses 1-4 of program 1 non-ground goals could be proved too. For
example we can alter the goal clause 5 with the following net-clause:

p(I,Y): node(I,Y,2,vrite(p(I,Y»).

In such a way we define a node which can indicate the satisfaction of the goal,
printing the answer substitutions. Hence we can obtain all possible solutions:

46

..,p(X,Y) v ..,p(Y,Z) v p(X,Z)

p(a,b) ..,p(Y,X) v p(X,Y)

P(C~

..,p(b,Z) V p(a,Z) p(b,c)

~
p(a,c) ..,p(a,c)

~
D

Figure 1: A refutation tree for NCL data-driven resolution

<- p(a,b),p(e,b),nl,fail.
p(a,e)
p(b,e)
p(e,b)
p(e,a)
p(b,a)
p(a,b)

In the above example we use only ground terms in the unit clauses. This is
because non-variable terms are required to activate the spreading activation
nodes. However this is not a substantial restriction since any program can be
transformed in such a way that the variables in the unit clauses are replaced
with non-variables terms including them.

The above example outlines only the basic scheme of using net-clauses for
deductive inference. In general, to implement the data-driven inference strategy
completely additional control means are required. These are mechanisms for
synchronisation and consistency checking of the data activating a spreading
activation node. The synchronisation problem is the counterpart of the problem
of non-determinism in the goal-driven strategy. In the case of data-driven
strategy the data (unit clauses) arrive in arbitrary order to unify the negative
literals in a program clause. Furthermore several unit clauses can be used to

47

unify one negative literal. This reflects in concurrent calls to the free nodes
in the net-clause. The synchronisation problem is solved by using lazy net­
variables of type 1. In this case all procedures trying to unify a free node form
a stream of terms, which eventually may unify its variables.

The problem of consistency arises in the presence of shared variables among
different free nodes. Their bindings should be the same for the unification of
all literals, where they appear. This property is easily achieved by using lazy
net-variables. In such way the shared lazy variables among different free nodes

in a net-clause assure the consistency of the different streams, i.e. they filter the
useless resolution steps in a local sense. The lazy unification scheme of the data­
driven inference is based on the already defined correspondence between Horn
clauses and net-clauses. The only restriction is that all negative literals in the
Horn clause program should have unique names. Thus all free nodes will have
unique names, which is needed to ensure the access to them. This restriction
is not substantial, since it can be avoided by appropriate transformations.

Let us consider the following non-deterministic Horn clause program:

/* 1 */ p(X,Y) <-- a(X,Y),b(Y) /* 6 */ b(2) <--
/* 2 */ a(X,Y) <-- c(X),d(Y) /* 7 */ c(a) <--
/* 3 */ a(1,2) <-- /* 8 */ d(4) <--
/* 4 */ a(2,2) <-- /* 9 */ d(2) <--
/* 6 */ a(1,3) <-- /* 10 */ c(b) <--

/* 11 */ <-- p(X,y)

The corresponding net-clause program is the following:

<- lazy(l).
node(X,Y,2,p(X,Y»: a(I,Y): bey).
node(I,Y,2,a(I,Y»: c(I): dey).
p(X,Y): node(X,Y,2,(write(p(I,Y»,nl».
<- a(1,2),a(2,2),a(1,3),b(2),

/* 1 */
/* 2 */

/* 11 */

c(a),d(4),d(2),c(b).
p(1,2)

/* 3,4,6,6,7,8,9,10 */

p(2,2)
p(a,2)
p(b,2)

The free node "a(X, Y)" collects several concurrent calls - three from the net­
clause query (a(1,2), a(2,2), a(1,3)) and three from the node procedure of
net-clause 2 (a(a,3), a(b,2), a(a,2». The shared variable Y in net-clause 1

48

filters some of the unifications checking the consistency between a(X,Y) and
b(Y) - both of them should be unified with proper data in order to activate
procedure lip". The procedure "p" in turn unifies the free node lip", which
activates node 11 printing the solutions - the answer substitutions of the goal
variables.

The lazy unification with decentralised control suits well to the data-driven
inference adopted here. The shared variable constraints are applied and new
data are generated only when Ilenough" input data are available. In such a way
the amount of the output data is reduced to the necessary minimum.

Generally the NCL data-driven inference can be viewed as two independent
processes:

• Local inference of solutions (new data) and propagating them among
the net-clauses in the program. This process is governed locally by the
spreading activation nodes.

• Supplying the net-clause program with data and keeping a track of the
currently inferred solutions. An important feature of this organisation of
the inference process is that partial solutions can be inferred.

Generally the net-clause data-driven inference is aimed at solving construc­
tive type of problems (how the parts construct the whole, e.g. the geometric
figure example), opposed to the goal-driven Prolog inference - aimed at solving
problems by decomposing them into sub-problems. However it is important
to note that since NCL is an extension of Logic Programming it allows both
inference schemes to be used in a uniform environment.

3.2: Logical semantics of the spreading activation

The data-driven inference on Hom clauses uses a restricted subset of NCL.
This is the restriction that a clause should have at most one positive literal,
i.e. the corresponding net-clause should have at most one spreading activation
node. However the net-clause syntax allows several spreading activation nodes
in a net-clause. This case can be interpreted in a more general context of first.
order language.

Definition 1 (Net-Clause) A net-clause is a universally quantified closed
formula in the form Cl t\ C2 " ..• " Cnu m ~ 1, where Ct (i = 1 •...• m) are
Horn-clauses A V....,Bl V,B2 V ••• V,Bn.. n ~ O.

49

Definition 2 (Net-Clause Program) A net-clause program N is a finite
set of net-clauses N = {Nlt ...• Nit}, where the net-clauses Nt (i= 1 •...• k)
are implicitly conjoined. A special case of a net-clause is the unit clause
At. The conjunction Al A A2 A ••• A An. corresponds with the NCL data
<- AI, ...• An.. , where Ai (i = 1, •..• n) are propositions.

The main difference between Horn clause and net-clause programs is that
in net-clause programming variables in different Horn clauses are allowed to be
'shared. To illustrate this let us consider the following example.

Suppose we have two Horn clauses defining two geometric figures (rhombus
and parallelogram) by their edges:

rhombus(A,B,C,D) <--
edge(A,B,S1,L1), edge(B,C,S2,L1),
edge(C,D,S1,L1), edge(D,A.S2.L1).

parallelogram(G,H.EjF) <--
edge(E.F,S3.L2). edge(F.G,S4,L3),
edge(G.H,S3,L2), edge(H.E,S4,L3).

An equivalent expression of the above set of Horn clauses using a traditional
logical notation is the following one:

(rhombus(A,B,C,D) V
~edge(A.B,S1.L1) V ~edge(B.C,S2.L1) V
~edge(C.D,S1.L1) V ~edge(D,A,S2.L1)) A (1)

(parallelogram(G,H,E.F) V
~edge(E.F,S3.L2) V ~edge(F.G,S4,L3) V
~edge(G,H,S3,L2) V ~edge(H,E,S4,L3))

Taking into account the meaning of the above formula the following substitu­
tions can be performed:

C1 = { G/A,B/B, S3/S1. L2/L1, S4/S2 }

Applying C1 and simplifying the formula we obtain

(rhombu8(A.B,C,D) V
~edge(A.B,S1,L1) V ~edge(B,C,S2.L1) V
~edge(C,D,S1.L1) V ~edge(D.A.S2.L1)) A (2)

(parallelogram(A,B.E,F) V
~edge(E.F,S1.L1) V ~edge(F,A,S2.L3) V
~edge(B.E.S2,L3))

50

Formula (2) is an instance of formula (1). Formula (2) represents no longer
two separate figures but one joining them together. The geometric meaning of
substitutions C1 is shown in Figure 2.

F E F E

(J

Figure 2: Geometric meaning of substitutions C1

Formula (2) is not in clausal form and thus cannot be translated back into
a set of Horn clauses. However following the definition 1 formula (2) is a net­
clause, which can be written in NCL syntax as:

<- 1azy(2).
edge(J..B.Sl.L1):
edge(B.C.S2.Ll):
edge(C.D.Sl.Ll):
edge(D.J..S2.L1):
edge(B.E.S2.L3):
edge(E.F.Sl.Ll):
edge(F.J..S2.L3):
node(J..B.C.D.4.rhombus(J..B.C.D»:
node(J..B.E.F.4.paral1e1ogram(J..B.E.F».

The above net-clause can indicate whether a set of edges represents a rhombus
or a parallelogram. (Since the edges have all the same names we use the
"backtrackable" version of the lazy variables - type 2).

The spreading activation scheme realises a kind of a non-clausal resolution
strategy [Murray 82], working on first order formulae in the form of net-clauses.
To illustrate this consider the net-clauses (Ci are Horn clauses and Di propo­
sitions):

(A V ...,B1 V ...,B2 V ••• V ...,Bm) A C1 A C2 A .•• A Cn

D 1 A D2 A ••. A Dk

(3.1)

(3.2)

51

Suppose that ...,B1 is resolvable with D1. Then applying the non-clausal resolu­
tion rule and simplifying the formula by truth functional reductions we obtain:

« A V ..., B2 V ••. V ...,Bm) A C1 A C2 A ••• A Cn) 0' (3.3)

where 0' is the mgu applied to resolve ...,Bl and Dl. Formulae obtained via
non-clausal resolution are called derived formulae.

Let consider now the general case of non-clausal resolution on net-clauses.
Assume that formulae (3.4) and (3.5) are derived at the i-th step of the non­

clausal resolution.

(C'1 A C'2 A •.. A
(Ai V ...,Bik V •.• V ...,Bim) A ••• A C'n)0'1

(A A C1 A •.• A Cp)0'2

(3.4)

(3.6)

This means that some of the subformulae occurring in the parent formulae
have already been resolved and the corresponding substitutions have been per­
formed. The corresponding sequences of performed substitutions are denoted
by 0'1 and 0'2. Assuming that (A)0'2 is resolvable with (...,Bik) 0'1 , and applying
the non-clausal resolution rule to formulae (3.4) and (3.5) we obtain

(C'1 A C'2 A .•• A
(Ai V ...,Bik+1 V ..• V ...,Bim) A •.• A C'n)O' (3.6)

where 0' = 0'1.0'2.0'3 is resulting sequence of substitutions and 0'3 denotes the
mgu applied to resolve (A)0'2 and (...,Bik)O'I. The formulae in the form of (3.5)
we call assumptions.

The above considerations allow us to introduce the following definition:

Definition 3 (Refutation Process for NCL) Let N be a net-clause pro-
gram and ...,G be the goal. The refutation process based on NCL non-

52

clausal resolution is the process of derivation of a sequence of assumptions
(Ao)uo, ... , (An)un, 0, where 0 denotes a contradiction resulting from the
resolution of (An)un and G.

Now we are able to extend the semantics of the data-driven inference.

Definition 4 (NCL Data-Driven Inference) NCL data-driven inference is
a restriction of non-clausal resolution that requires at least one of the par-
ent formulae in each non-clausal resolution operation to be a proposition
(formula 3.2) or an assumption (formula 3.5).

Thus the refutation process in the net-clause language is pedormed by
data-driven inference. Furthermore it can be proved that the NCL data-driven

inference strategy is sound and complete.

4: Conclusion

In the present paper a network modeling environment called Net-Clause Lan­

guage (NCL) was described. Besides its original (network modeling) purpose
NCL exhibits clear logical semantics. This semantics defines a framework for
using NCL for logical reasoning. Two basic schemes can be used for this pur­
pose - data-driven inference and default reasoning. The data-driven inference
was considered as a tool implementing clausal and non-clausal resolution. The
default reasoning scheme is discussed in [Markov et aI90b], where its applica­
tion for natural language parsing is shown.

An important issue currently focusing our attention is how to program
in NCL. Since the language falls in the class of distributed processing ones,
programming is considered mostly as learning. A kind of a "learning-from­
examples" scheme, based on term generalisation is developed. It is considered
in the framework of induction of definite clauses and solves the problem of
inducing data-driven rules from their ground instances. This aspect of NCL is
reported in [Markov 91].

An important aspect of PDP schemes is parallelism. Though NCL is im­
plemented in a purely sequential environment (extending sequential Prolog) it
has some basic features to be implemented on a parallel architecture. Moreover
the NCL networks can simulate parallel execution. Generally the functional be­
haviour of parallelism can be achieved in a sequential computational environ­
ment when two properties are present: decentralised control and independence

53

of the computation on the order of the input data for each processing element.
While the first condition is an inherent property of NCL, the second one can
be achieved by introducing two restrictions:

• The use of activation-by-need scheme should be avoided. This scheme
exhibits a non-monotonic behaviour, which intrinsically depends on the
order of the data.

• The node procedures should not cause side-effects.

Having in hand a distributed computational scheme simulating parallelism,
the transition to real parallel processing is only an implementational step. For
this purpose it is necessary to assign a separate process to each procedural
node in the network. In this scheme the activation conditions can serve as
synchronisation conditions for the processes.

The net-clause networks resemble connectionist networks. The spreading
activation nodes can play the role of threshold elements. The typical for connec­
tionism localised and distributed representations are easily achieved in NCL.
Thus NCL can be used as a connectionist modeling tool. Moreover it is a
step toward integration of connectionist and symbolic approaches to AI. These
aspects of NCL are discussed in [Markov 89] and elsewhere.

54

References

[Chang & Lee 73] Chang, C.L. and R.C.T. Lee. Symbolic logic and
mechanical theorem proving. Academic Press,
London, 1973.

[Friedman & Wise 76] Friedman, D.P. and D.S. Wise. "CONS should not
evaluate its arguments", in: S. Michaelson and
R.Milner, eds., Automata, Languages and Pro-
gramming. Edinburgh University Press, 257-284.

[Gregory 87] Gregory, S. Parallel Logic Programming in PAR-
LOG. Addison-Wesley, 1987.

[Henderson & Morris 76] Henderson, P. and J .H. Morris. "A lazy evalua­
tor", in Proceedings of the 3rd ACM Symposium
on Principles of Programming Languages, 1976,
ACM,95-103.

[Jorrand 87] Jorrand, Ph. "Design and implementation of a par­
allel inference machine for first order logic", in:
Proc. PARLE Conference. Lecture Notes in Com­
puter Science No. 259, Springer-Verlag, 1987.

[Lloyd 84] Lloyd, J.W. Foundations of Logic Programming.
Springer-Verlag, 1984.

[Markov 89] Markov, Z. "A framework for network modeling in
Prolog", in: Proceedings of IJCAI-89, Detroit,
U.S.A (1989), 78-83.

[Markov & Risse 88] Markov, Z. and Th. Risse. "Prolog Based Graph
Representation of Polyhedra", in: Proceedings
of AIMSA '88, Artificial Intelligence III, North­
Holland, 1988, 187-194.

[Markov & Dichev 90] Markov, Z. and Ch. Dichev. "Logical inference
in a network environment", in: Proceedings
of AIMSA '90, Artificial Intelligence IV, North­
Holland, 1990, 169-178.

[Markov et a190a] Markov, Z., C. Dichev and L. Sinapova. "The Net­
Clause Language - a tool for describing network
models" ,in: Proceedings of the Eighth Canadian
Conference on AI, Ottawa, Canada, 23-25 May,
1990, 33-39.

[Markov et a190b]

[Markov 91]

[Murray 82]

[Shapiro 82]

[Sinapova 90]

[Stickel 86]

[Udea 85]

55

Markov, Z., L. Sinapova and Ch. Dichev. "Default
reasoning in a network environment" , in: Proceed-
ings of ECAI-90, Stockholm, Sweden, August 6-
10, 1990, 431-436.

Markov, Z. "An Approach to Data-Driven Learn­
ing", in Proceedings of the International W ork-
shop on Fundamentals of Artificial Intelligence
Research (FAIR-91), September 1991, Smolenice,
Czechoslovakia, LNCS, Springer-Verlag, 1991.

Murray, N.V. "Completely non-clausal theorem
proving", Artificial intelligence 18 (1982), 67-85.

Shapiro, E. "Concurrent PROLOG: A Progress Re-
port", in: Lecture Notes in Computer Science
No. ~3~, Springer-Verlag, 1986,277-313.

Sinapova, L. "A network parsing scheme", in: Pro-
ceedings of AIMSA '90, Artificial Intelligence IV,
North-Holland, 1990,383-392.

Stickel, E.M. "An Introduction to Automated De­
duction", in: W. Bibel, Jorrand, eds., Funda-
mentals of Artificial Intelligence. An advanced
Course, Springer-Verlag, 1986.

Ueda, K. "Guarded Horn Clauses" , ICOT Technical
Report TR-I03, 1985.

A General Computational Scheme for
Constraint Logic Programming

John Darlington Yike Guo
{jd, yg, wq} @doc.ic.ac.uk

Department of Computing
Imperial College

180 Queen's Gate
London SW7 2BZ

England

Abstract

Qian Wu

In this paper we propose a novel computational model for constraint
logic programming (CLP) languages. The model provides an efficient
mechanism for executing CLP programs by exploiting constraint satis­
faction as a means for both solving constraints and controlling the whole
computation. In the model, we separate constraint solving from the de­
duction procedure. Deductions over constraints are extracted from the
source program and represented as a contezt-jree grammar that encodes
the way in which deduction will generate constraints to be solved. There­
fore, deduction is performed abstractly at compile time. Executing the
grammar generates all the constraints that need to be solved at run time.
A very flexible control mechanism is therefore provided by the model in
terms of the information fed back from the constraint solving procedure.
It is shown that the model provides a general scheme for investigating
an efficient computational model for implementing constraint logic pro­
gramming systems.

1: Introduction

In recent years, there has been a flurry of interest in constraint languages.
In constraint programming constraints provide a means to specify the com­
ponent conditions of a problem. The whole problem can then be represented
as a program which is organised by putting constraints together using logical
connectives. To enhance the expressive power of the constraint programming
paradigm, extensive work has been carried out within the declarative pro­
gramming framework, particularly in functional programming and logic pro­
gramming. In logic programming, research has led to a new programming

57

paradigm called "Constraint Logic Programming (CLP)". CLP views a logic
programming language as a constraint language on the domain of discourse.
Such new logic programming languages as PrologII [Colmerauer 82], PrologIII
[Colmerauer 87], CLP(R) [Jaffar et a187) etc. fall within this framework. In
[Darlington et al90b], the authors proposed a generjJ.I framework for constraint
logic programming by defining the Assertional Programming paradigm. From
the assertional programming point of view, programming in any declarative lan­
,guage can be viewed simply as making assertions. These assertions, or sen­
tences, are axioms that the programmer believes to be true in a well-understood
mathematical system acting as the semantic foundation of the language. These
assertions can be entered into the computer as a program and then used as the
premises for deductive inference when a problem (query, goal or constraint) is
submitted to the system. These assertions are then invoked automatically in
deducing the submitted problem as a consequence. Therefore, a CLP system
can be viewed as an assertional programming system in which symbolic logical
deduction and constraint solving in the domain of discourse are integrated.
Programming thus becomes equivalent to defining new constraints over the
domain of discourse. The authors developed several new CLP systems, such
as constraint equational logic [Darlington It Guo 90a] following this approach
as well as a new programming paradigm named Constraint Functional Logic
Programming which was proposed [Darlington et al91] as a uniform language
framework to integrate typed higher order functional programming systems
with constraint logic programming systems.

The constraint model of computation, which was first introduced by Steele
[Steele 80], is based on constraint solving which is a constructive procedure to
solve the following constraint satisfaction problem:

Given a constraint, do there exist values for all variables in the
constraint such that the constraint holds?

In [Steele 80], a technique called local propagation was used for solving con­
straints. Local propagation attempts to satisfy a large collection of constraints
piece by piece. A local propagation step occurs when enough variables in a
constraint become ground for other variables to be instantiated. A collec­
tion of constraints is solved by local propagation if all the variables in the
system become determined after a finite number of local propagation steps.
This technique is also used in some logic programming systems such as CP
[Saraswat 87] in which constraints are represented by the predicates and solved
in a sequence indicated by the form of the guards of the rules. In CLP(R), al-

58

gorithmic procedures, such as Gaussian Elimination and the Simplex method,
are used for solving some arithmetic constraints on the real number domain.
A delay/wakeup condition is defined for those constraints whose satisfiability
problem is intractable or,even undecidable (e.g. non-linear equations). That
is, constraint solving will be delayed until a sufficient number of other con­
straints, which are selected from the subset defined by the wakeup condition,
entail that the delayed constraint may now become eligible for solving. All
these mechanisms only solve a static primitive constraint set. However, in
any CLP system, constraints are dynamically created by deduction steps such
as resolution or narrowing [Fay 79]. The impact on the design issues of the
computational model for CLP systems is two-fold:

1. How do we design a proper interface for constraint generation (by con­
straint deduction) and constraint solving?

2. How do we design a proper solver which can incrementally solve the
dynamically generated constraints?

Both problems are related and, fortunately, many constraint solvers from
the mathematical world possess the incremental property. But, to our knowl­
edge, there is no satisfactory solution yet to the first problem. In the CLP(R)
implementations, an inference engine was used to perform logic deduction to
generate constraints and the solver was responsible for solving non-trivial con­
straints. A distinct interface between the deduction engine and the solver
was designed to do some simple solving work and transform constraints to a
canonical form acceptable to the solver. The inference engine was actually the
extension of the traditional Prolog system in the sense that the unification pro­
cedure was replaced by a procedure to generate constraints which were then
solved by a built-in constraint solver over free terms and real numbers. There
are many problems with this design. The most important drawback is that
everything is performed at run-time, including resolution (for logic deduction),
generating constraints, constraint solving itself and backtracking. This is by
no means efficient. An important observation is that in any CLP system, the
deduction procedure is mainly responsible for generating constraints and is al­
ways separated from constraint solving itself. The major computational task is
actually shifted from logical deduction to constraint solving. Therefore, as we
will claim in the paper, the idea of separating deduction from constraint solving
and doing much of the deduction at compile time is an important issue in the
efficient implementation of constraint logic programming systems. What we
propose in this paper is a novel computational model which does all that can

59

be done at compile time. The resolution step, which is only used to generate

constraints, isn't performed at run time but is compiled into a conte:rt-free
grammar that represents the way constraints will be generated. At run time,

grammar rewriting is executed to generate solving plans, denoting collections

of constraints to be solved. The solver decodes the solving plans and solves the

corresponding constraints. Since all the information about every collection of

constraints of each computational path is maintained by the grammar, the con­

trol strategy for non-deterministic computation is completely :8exible. There
is no sequential restriction, no "built-in" control strategy and, of course, no
backtracking. This work originated in the connection graph approach to theo­

rem proving [Chang & Slagle 79]. In the next section, we will recapitulate the

notion of constraint logic programming and its operational model. An overview

of the abstract machine is presented in Section 3 together with a compilation

scheme. In Section 4, we present the organisation of the machine focusing on

the control strategy. Conclusions and related work appear in Section 5.

2: Constraint Logic Programming

2.1: Constraint Systems

Constraint systems are motivated by the desire to perform computation over
some well understood domains such as boolean algebra, integers, rational num­
bers or lists. These domains come equipped with natural algebraic operations
such as boolean conjunction and disjunction, rational addition and multipli­

cation, they also have associated privileged predicates such as equality and
various forms of inequalities. Such a computational domain together with its

operators can be regarded as an algebra. The logical formulae of the algebra

can be abstractly regarded as constraints. Constraints provide a way of defin­

ing objects implicitly by stating the logical relations that must hold between

them. That is, a constraint denotes a set of objects which realise the relation.
This notion is captured as follows:

Definition 1 (Constraint System) GitJen a computational domain A and
a set of tJariables v. We define a constraint system, C, formally as a tu-
ple: (A, V, ~,I) where ~ is a decidable set of constraints otJer A. I is a
solution-mapping [f which maps etJery constraint ~ E ~ to [~f, a set

60

of A-valuations, which are called the solutions of 4>. Let VOlA be the set
of all A-valuations. A constraint is satisfiable in C iff its solution set is
non-empty. A constraint 4> is valid in I iff [4>]1 = VOlA. For a set of
constraints CP, I is a model of CP if all the constraints in CP are valid in
I. Assuming a set W of variables, the W -solutions of a constraint 4> in
I are the set of solutions: l4>]fw := {«tw I oc E [4>]I}. A constraint 4> is
equivalent to a constraint 4>' iff [4>]1 = [4>,]1.

Definition 2 (Closed under Logical Connectives) A constraint system:
SA : (A, V, CP, I), is closed under logical conjunction (resp. disjunction,
implication, existential quantification) if for any constraints 4>1. 4>2 E CP,

there exists a constraint 4>1 1\ 4>2 (resp. 4>1 V 4>2, 4>1 :- 4>2,3x..4>J) E CP and:
[4>1 1\ 4>2]1 = [4>1]1 n [4>2]1

[4>1 V 4>2]1 = [4>1]1 U [4>2t
[4>1 :- 4>2]1 = [4>1]1 U {VOlA - [4>2]1}

[3x.. 4>] 1 {oc E VOlA I «tw-x = I3lw- x,13 E [4>]I}

where W is the set of variables in 4>. Constraints which do not contain
logical connectives are called atomic constraints.

In this paper we assume that all constraint systems are closed under these
logical connectives and contain equality constraints. Closure under conjunc­
tion permits systems of atomic constraints to be solved simultaneously. Clo­
sure under disjunction is required to represent alternative solutions to a goal
constraint. Implication expresses the deduction relation between constraints,
specifically it may be used as a programming construct. The existential quan­
tifier permits the use of bound variables in constraints, i. e. variables that do
not occur in the solution set.

To solve constraints, we require that a constraint system comes with a set of
solved forms such that every constraint in solved form is satisfiable. For every
satisfiable constraint G, in general, there exists a complete set of solved forms
SolG such that the disjunction of all constraints in the set is equivalent to G.

That is, for all G~ E SolG and G' = V~1 GL [G]l = [G,]l = U~=1 [G~t Solved
forms are introduced because of the ease with which their satisfiability may be
verified, and with which solutions may be derived from them. A procedure·
which computes solved forms in a constraint system is called a constraint
solver. We use --+c to denote the derivation relation of a constraint solver C.

Definition 3 (Soundness and Completeness) Let {A, V, CP,I} be a con-
straint system and C a constraint solver for the system.

61

Soundness: C is sound iff for any constraint G:

Completeness: C is complete iff for any constraint G, "Icc. E [G]I, there
exists a constraint G' which is in solved form and:

G -c G' and cc. E [G,]I

We present two constraint systems as examples.

Example 1 Let 'R be the real number domain equipped with the arith-
metic operations F : {+, -, *} and ~R be a set of linear equations. SRea1 =
('R, V, ~R,IR) is a constraint system over real numbers where the inter-
pretation IR maps each linear equation to the (possibly infinite) set of its
solutions. A set (or conjunction) of linear equations:

11m = am,IXI + ... + am,n.Xn. + em

is in solved form if the variables 111 to .. ,11m and x It ••• ,Xn. are all dis-
tinct. The variables 111, ••• ,11m are eliminable variables and XI, ••• ,Xn. are
parameters. Algorithms for solving linear equations, such as Gaussian
elimination, are sound and complete constraint solvers for this system.
Linear arithmetic constraints have been studied extensively by Lassez and
Jaffer el.al. and used as the predefined component of a constraint logic
programming system {Jaffar et al 87}.

Example 2 Let TIl be the set of all ground E-terms for a given signature
E, V be a set of variables and ~Il be the set of equations over T Il(V), SIl =
{TIl, V, ~Il, IIl} is a constraint system over the first order E-terms where the
interpretation III maps each term equation to the (possibly infinite) set of
its ground unifiers. A conjunction of term equations 4> is usually called
a system of equations in the literature. As shown in {Lassez et al 87}, for
any satisfiable system of equations, its unique solved form is a new system
of equations of the form {XI = tl, ' •• , Xn. = tn.} where the Xi, 's are distinct
variables which do not occur in any of the tj 's. Therefore, as with the
constraint system SRea1, the variables XI, ••• , Xn. are eliminable variables
and variables in the tj 's are parameters. Traditionally, the notion of the

62

most general unifier (mgu) is used to represent solutions. The relation
between the solved form and the mgu of a system of equations can be
established by following theorem {Lassez et al 87}.

Let « = {XI -+ tl •..•• Xn -+ tn.} be an idempotent substitution, « is the
mgu of a system of equations cj) iff the equation system: {XI = tl •..•• Xn =
t n } is the solved form of cj).

Unification algorithms, such as the following Martelli and Montanari
algorithm {Martelli tJ Montanari 82J, are complete and sound constraint
solvers, transforming a system of equational constraints to its solved forms.

Tri"ial:

Term Decomposition:

Variable Elimination:

Go : {t = t} /\ S
GI :S

Go :Jf(tl tn.) = f(sl •...• Sn)~ /\ S
I : { tl - SI.· ••• tn. - Sn} /\

Go: {x = t} /\ S
GI:{x-t}/\a-S

where x ~ vaT(t)
and C1 = t/x.

2.2: Constraint Horn Clause Logic Programming

A constraint system can easily be integrated into a logic programming system
by exploiting the semantic information of the abstract symbols. The resulting
constraint logic programming system is a logic assertional system with a well­
defined intended model. In [Darlington et a190b], the authors presented a
procedure for constructing a eLP system by defining general logic assertions
over a constraint system. We focus here on the constraint Hom clause logic
programming paradigm. Let c: (A. V. ~c. Ie) be a constraint system with ~c
as a set of primitive constraints over A.

A constraint (Horn clause) logic program rover C is a set of constrained
defining rules of the form:

p(el •...• en) :- CI ••••• en. BI ••••• Bm

where p(e), en) is an atom, i.e., pEn is an n-ary user defined predicate
and el •...• en are expressions over A where n is the signature of user-defined
predicates in r. The Ct E ~c and the Bt are atoms. An interpretation I of r
over C is defined by a function []I interpreting any predicate symbol PEn as
a relation pi over A. That is,

Vc E ~c.[ct = [c)le

[p(X), Xn)J1 = {« E YQ1~ I «(X), ...• Xn) E pI}

63

Since the underlying constraint system is assumed to contain equality con­
straints, the interpretation function can interpret an atom 1>(el, .•• ,en.) as:

n.
[1>(el,oo .• en.)]1 = [1>(X1. 00 •• Xn.)]1 n n [Xl = et]le

t=l

A model of rover C is an interpretation which satisfies all the rules of the
program. We use ModI' to denote all the models of the program. Models of
a CLP program can be ordered in terms of the set inclusion ordering. The
minimal model MI' of rover C may be constructed as the least fixed point
of the traditional "bottom-up" iteration which the computes ground relations

entailed by a program [Smolka 89]. That is, MI' is the limit Ut~O M~ of the
sequence of interpretations:

1>M~ = 0
n. j m

1>M~+1 = {«(Xl. 00 •• Xn.) I Q: E n [Xl = ea1e n n [Ct]le n n [BaM~}
\=1 \=1 \=1

Theorem 1 Given a constraint system C : (A. V. ~e, Ie) and r, a con-
straint logic program over C. The sequence of interpretations M~ consti-
tutes a chain in a cpo of interpretations of r ordered by the set inclusion
relation. The limit of the chain is the minimal model of rover C.

The following theorem shows that a CLP program extends its underlying con­
straint system by defining new relational constraints.

Theorem 2 Let r be a constraint logic program and I1 be the signature of
the user-defined predicates in r. r is a constraint system:

I1(e) : (A. V. ~e U ~n. Ie U In)

which is a relational extension of the underlying constraint system

C : (A. V. ~e. Ie)

constructed by extending ~ e to include user-defined relations over A. That
is, ~n contains all I1-atoms of the form 1>(Xl Xn.) The interpretation of
all C-constraints remains unchanged in I1(e). Each user-defined predicate
is interpreted by In - that is, Ie U In = Mr , defined by the minimal model
of rover C.

64

Therefore, for a given constraint system C, a constraint logic program defines a
relational extension of C by interpreting the user-defined predicates through

the minimal model of the program over C.

It is clear that the traditional Horn clause logic programming system (Pro­
log) is a special case of this eLP paradigm where. the underlying constraint
system is an equational system over the free term algebra (Herbrand space)
(see example 2). The constrained SLD-resolution procedure for computing
the solved forms of query constraints can be defined as a non-deterministic
algorithm consisting of following three deduction rules l :

Semantic Resolution:

Constraint Simplification:

Finite Failure:

where Woll(el ... en) :- Cl •...• Cit. Bl •...• Bm
is a variant of a clause in a program r.

G : 3x~n ~ c~
G': 3x IT c}

G: 3X(n 0 c}
1..

if 3X.c -e 3X.c'.

if 3X.c -e.1, where
.1 denotes finite failure.

In constrained SLD resolution, semantic resolution generates a new set of
constraints whenever a particular program rule is applied. The key point is
that the unification component of SLD-resolution is replaced by solving a set
of constraints over the computational domain. The constraints are accumulated
during deduction and then simplified to their solved form. Whenever it can be
established that the set of constraints is unsolvable, finite failure results.

The following theorem proved in [Smolka 89] and [Guo 90] shows that con­
strained SLD-resolution is a sound and complete solver for a relationaUy ex­
tended constraint solver.

Theorem 3 Given a constraint system G and its relational extension n(C),
constrained SLD-resolution is sound and complete when solving constraints
in n(C).

1 We represent a goal, which is a conjunction of relational constraints (in ~II) and primitive
constraints (in ~c). by a multiset. n denotes the multiset of all relational constraints and C
denotes the multiset of all primitive constraints. The symbol 0 is used only to emphasise
the distinguished components of a constraint set and should be read &I multiset union

65

Applied to a given query (goal), let _R._C., _R.C. stand for deriva­

tions, semantic resolution, constraint simplification and constrained resolution
respectively. Soundness and completeness of the calculus means that a goal
constraint can be computed to its solved forms by enumerating constrained res­
olution derivations. For example, the following CLP program [Colmerauer 87):

InstalmentsCapital (0, 0);
InstalmentsCapital (i::x, c) :­

InstalmentsCapital (x, 1.1.c - i);

can be used to compute a series of instalments which will repay capital bor­
rowed at a 10% interest rate. The first rules states that there is no need to
pay instalments to repay zero capital. The second rule states that the sequence
of 1+1 instalments needed to repay capital c consists of an instalment i fol­
lowed by the sequence of 1 instalments which repay the capital increased by
10% interest but reduced by the instalment i. When we use the program to
compute the value ofm required to repay $1000 in the sequence (II, 211, 3m),
we compute the solved form of the goal constraint:

InstalmentsCapital (u., 2m, 3mJ, 1000)

One execution sequence is illustrated as:

InstalmentsCapital (u., 2m, 3mJ, 1000)
_R InstalmentsCapital (x,l.lc-i),

x=[2m, 3mJ, i=m, c=1000
_R InstalmentsCapital (x',l.lc'-i'),

x=i'::x', c'=l.lc-i, x=[~, 3mJ, i=II, c=1000
_c InstalmentsCapital (x',l.lc'-i'),

i'=2m, x'=[3mJ, i=m, c'=1100-11
_R InstalmentsCapital (x",l.lc"-i"),

x'=i": :x", 1.1c'- i'=c", i'=~, x'=[3mJ,
i=m, c'=1100-m

_c InstalmentsCapital (x",l.lc"-i"),
x' '=0, i' '=3m, i'=2II, i=m, x'=[3mJ,
c'=1100-m, c"=1210-3.111

_R x"=[], 1.lc"-i"=O, i"=3., i'=2m, i=m, x'=3m,
c'=1100-m, c"=1210-3.1m

_c 1.1(1210-3.1m)=3m
_c m=207+413/641

66

As shown by this example, the semantic resolution step dynamically gen­

erates constraints which are then solved via constraint simplification. The
interaction between these two steps is essential to the whole computation pro­
cedure. Constraints should be generated incrementally and then solved effi­
ciently. More importantly, the constraint solving procedure should be able to
control the computation effectively. That is, whenever finite failure is reached,
the corresponding computational branch should be pruned promptly and no
more constraints generated along that path. Thus, as mentioned in Section 1,
a proper treatment of the communication between deduction and constraint
solving is crucial for the implementation of any constraint based deduction. In
the next section we present a general computational scheme that provides a
promising solution to this problem.

3: An Overview of the Scheme

In this section, we present a computational scheme for CLP systems. The
scheme can be viewed as an abstract execution model (or abstract machine).
Therefore, we will overview the scheme by outlining its instruction set, compi­
lation scheme and computational mechanism.

3.1: The Instruction Set

The instruction set of the scheme is a context-free grammar M = (E, T, P, I)
where

1. E : {5, 51. 52, ... } is a finite set of non-terminals;

2. T: {alta2,"'} is a finite set (disjoint from E) ofterminals;

3. P is a finite set of production rules, which are of the form:

k m

5 +- IT at IT 5j
t=o j=O

where n~=o at: at x a2 x ... x ak is a string of terminals

n~O 5j : 51 x 52 X ... X 5m is a string 'of non-terminals

67

If there are n production rules having the same LHS:

hi ml

Sk +-- IT 0Ci1 IT Sjl E P
il=O, 11=0

h.. m ..

Sk +-- IT 0Ci.. IT Sj .. E P
i .. =O j .. =O

then we can combine these rules into one rule:

n. hi hi

Sk +-- L IT 0Ci1 IT Sj1 E P
1=1 il=O h=O

where + is an alternative operation

4. I is a special non-terminal, called the start symbol.

The derivation relation --+ is defined as a rewriting relation over (E U T)*
which contains all the strings consisting of terminals and non-terminals pro­
duced by regarding the set ofrules P as a rewriting system. That is, llAl2 --+
II el2 for any ll' l2 E (E U T)* iff there exists A --+ e E P. We use --+* as
the reflexive and transitive closure of --+. A sentence generated by a gram­
mar M is a string which contains only terminals and can be derived from I
using the production rules. We call the set of all M-generated sentences rM, a
M-generated language. That is,

rM = {~* E T*I I --+* ~*}

In our scheme, a eLP program is compiled into a context free grammar
(see Section 3.2). The semantics of a compiled grammar can be defined by the
semantic function S[], mapping each string in (EUT)* to primitive constraints:

1. Each terminal 0Ci corresponds to a conjunction of primitive constraints:

2. Each sentence ~* = ~I ••••• 0Ci is a conjunction of constraints:

3. Each non-terminal S is a set of primitive constraints which correspond to
the sentences derived from S:

SIS] = {S[~*] IS --+* ~*}

68

Two associative-commutative operators, x and + over strings are interpreted
as the conjunction and disjunction operations on the constraint sets. Following
this semantics, the language generated by a grammar is a set of constraints to
be solved by the underlying constraint system. Computation in the scheme is
performed by executing the grammar to generate constraints (simulating the
resolution steps) and then solving the generated constraints. Therefore, it is

reasonable to call a compiled grammar M the instructions of the scheme. Each
sentence generated by the grammar is called a solving plan.

3.2: The Compilation Scheme

In order to obtain the grammar, we have to compile the source eLP program
using the following compilation rules.

Definition 4 For a CLP program~ r with clauses of the form
1'(el , ... ,en) :- ~ and a goal G, the function Cn : r --+ M compiles
program r to grammar M by:

Compiling constraint conjunctions: Conjunctions of constraints are
compiled by compiling each component:

Compiling primitive constraints: Primitive constraints are directly
compiled to terminals which means that primitive constraint solving
is static, it will not involve resolution.

C[{H e
C[~] = ex

where e is a special terminal denoting the empty constraint and ex is
a terminal denoting the primitive constraint ~.

Compiling defined relations: If there are n rules for a predicate 1', the
relational constraint 1'(e) will be solved by generating new constraints

2 Aa we described before. a eLP prop-am defines a relationally extended constraint system
fi(C) oyer its underlying constraint system C. Since we AIIume any constraint system is
closed under conjunction, it is easy to write a program rule as p(e' •...• en) :- oJ where
oJ is the conjunction of primitive constraints and relational atoms, and therefore itself is a
constraint in fi(C).

69

using resolution. Therefore, we use:

n { :~:~~ ~= :~
C['p(e)] = ~ a.tSl'(i) if there arenrules fo,.,: :

1'(en) :- 4>n

where at = {e = et} and Sl'(i) is a non-teNninal associated with the
ith rule for 1'.

Compiling program rules: Rules are compiled as production rules in the
grammar and will be responsible for generating new primitive con-
straints:

Compiling the goal: The goal is compiled into a rewrite rule for the
start symbol I:

C[:- G] = I - C[G]

By this compilation scheme, the following eLP program:

InstalmentsCapital (0, 0);
InstalmentsCapital (i::x, c) :­

InstalmentsCapital (x, 1.1.c - i);

with the goal constraint: InstalmentsCapital ([a, 2m, 3m], 1000) will
be compiled into the grammar:

I - ctl x Ste(l) + ct2 X Ste(2)

Ste(l) - t

Ste(2) - ct3 x Ste(1) + CX4 x Ste(2)

where S[ctl] = {[m.2m.3m] = U. 1000 = O}.
S[ct2] = {[m.2m.3m] = i:: x. 1000 = e},
S[ct3] = {x = U. 1.1 * e - i = O} and
S[CX4] = {x = i' :: x', 1.1 * e - i = c'} are primitive constraints in

the underlying constraint system consisting of a unification procedure together
with a constraint solver for linear equations over the real numbers [J affar et al
87]. Simplifying the production rules. we get the grammar:

I - ctl + ct2 x Ste(2)

Ste(2) - ct3 + CX4 x Ste(2)

70

3.3: The Computational Mechanism

For a compiled grammar, M = (E, T, P, I), computation starts with the start
symbol I and generates solving plans. Each solving plan denotes a conjunction
of primitive constraints which are exactly the constraints that would be gener­
ated by a complete deduction path. Therefore, the language generated by M
enumerates all constrained resolution derivations --+R,C •. A constraint solver
can now be used to check whether the plan denotes a satisfiable constraint
and to convert all satisfiable constraints to their solved forms. For example,
the above grammar for the InstalaentsCapi tal program can be executed to
generate the solving plans:

{ 1 12 123 1234 }
«1, «2«3' «2«4«3' «2«4«4"'3, «2«4«4«:4«3'···'

where a superscript on a terminal distinguishes the different invocations of a
grammar rule. This information is necessary for correct variable renaming. We
will not discuss this issue in this paper because of space limitations. We assume
all renamings are correctly performed. Using a linear unification procedure
(e.g. the Martelli & Montanari algorithm [Martelli & Montanari 82]) together
with a solver for linear equations over real numbers as the constraint solver of
the underlying constraint system we get the solutio1'l::

{.l} by solving «1

{.l} by solving «2«1

{.l} by solving «2«l«~

{m = 207 + 413/641} by solving «2«l«~«~

We will find that all the remaining solving plans are of the form
«2«l«~«~ ... and that they are unsatisfiable since the constraint correspond­
ing to «2«l«~«~ is unsatisfiable. Therefore, the computation ends with the
solution _ = 207+413/641 as the solved form of the goal constraint. In this

example, «2«l«~«~ is the minimal constraint which causes the unsatisfiabil­
ity of any further computation. Such a string is regarded as an unsatisjiable
constraint pattern. As we will see in the next section, unsatisfiable constraint
patterns provide important control information for pruning useless computa­
tional paths.

71

4: Machine Organisation

In Section 3, we illustrated the basic principle of the scheme in a "producer­
filter" manner. The grammar behaves as a "producer", generating all solving
plans denoting primitive constraints computed by the resolution steps and the
constraint solver behaves as a filter, solving all satisfiable constraints and dis­
carding all unsatisfiable ones. To construct a practical computational system,
we must refine this "open loop" system to a "closed loop" system by design­
ing a proper cooperation between constraint generation and constraint solving,
and by exploiting fully the control information from the solver, to control the
whole computation. A control strategy of the system will decide:

1. How to generate solving plans.

2. How to solve the corresponding constraints.

3. How the information about constraint solving can be used to prune useless
computation.

To design the control strategy, we first define the computational state of the
scheme.

Definition 5 Given a grammar M = (E, T, P, I) and 1 +-- w E P, the com-
putational state is defined inductively as

1(0) = w
I(i+ 1) Wi+l

where Wi+l is derived by rewriting some non-terminal in I(i) In general
I(i) has the form

n T l'

L. (IT ~I)(IT Sm1c)
m=1 1=1 1c=1

Computational states provide a proper way to specify the execution behaviour
of the scheme. The control strategy can be regarded as the transformation of
computational states. The first issue is considered by deciding how to rewrite
some non-terminal Sm1c in Wi in order to proceed to the next state I(i + 1).
This determines the search strategy of the computation. If we rewrite only
one particular non-terminal and insist on extracting only one solving plan at

72

each level, it corresponds to depth-first search. If, by contrast, we rewrite all
non-terminals and delay the checking for possible unsatisfiable constraint pat­
terns, then we have breadth-first search. As to the second issue, the constraint
solver should always be used to check the satisfiability at each stage for all
newly generated solving plans. Particularly, the constraint solver should also
check the satisfiability of a partially generated solving plan (n;=1 ct,nj) for a

term (nj=1 ct,nj)(nk=1 511\1t) of state I(i) to discover unsatisfiable constraint
patterns. This means that we don't prefer a pure depth-first search strategy.
The third decision involves control over the search. It is closely related to
the second decision. Since the constraint solver is assumed to have the incre­
mental property, discussed in Section I, the partially generated solving plans
should be checked for unsatisfiable constraint patterns each time non-terminals
are rewritten. This means, on the other hand, we certainly don't explore the
explosive breadth-first search strategy. Now, the inductive definition of the
computational state can be refined to:

1(0) = w

and if
11. T l'

lei) = L (II ct,nj)(II 511\1t)
m=1 j=1 1t=1

then I(i+ 1) = Wt+1 where Wi,+1 is generated by the following steps:

1. Deleting all solving plans in I(i), since all the corresponding constraints
are being solved by the constraint solver.

2. Checking the partially generated solving plan (nl=1 ct,nj) for each

(nj=1 ct,nj)(nk=1 511\1t) of state I(i) and then deleting all the
terms (nj=1 ct,nj)(n~=1 511\1t) whose partially generated solving plan
(n;=1 ct,nj) is an unsatisfiable constraint pattern.

3. Rewriting non-terminals in I(i) in terms of the chosen search strategy.

The whole computation terminates at the nth-stage iff I(n) is empty. It is a
distinguished feature of our scheme that the search strategy is open for the
designer instead of traditionally fixed for an abstract machine. Many optimi­
sations can be achieved by taking advantage of this feature. This "closed loop"
system configuration is illustrated in Fig 1.

If we use the le1Jel by le1Jel breadth-first search mechanism by rewriting all
non-terminals in Wt simultaneously in one step, we can illustrate the execution
sequence of the above InstalmentsCapital program as follows:

73

I(i + 1)
Unaatiafiable

Pattern

Plan Generator:

I(i):

I(i) Constraint
Sol ved Fora

Gra.aar -Solver

Figure 1: Machine Organisation

(a) Submit the solving plan ~1 to the solver to compute the solved
form and ~2 to the solver to check its satisfiability. Since ~1 is
unsatisfable, it is computed to .L

(b) Delete ~1 in 1(0). Since ~2 is satisfiable, rewrite Stc(2) once.

Then,

(a) Submit the solving plan ~2~1 to the solver to solve the correspond­
ing constraint and then check ~2~~ for satisfiability. ~2~1 is still
unsatisfiable. Therefore, it is reduced to .L

(b) Delete ~2~1 in 1(1). Since ~2~~ is satisfiable rewrite Stc(2) in 1(1)
once.

Then,

74

(a) Submit the solving plan ~2~l~ to the solver to solve the corre­
sponding constraint and then check ~2~l ~~ for satisfiability. ~2~l ~~
is still unsatisfiable. We get 1. again.

(b) Delete ~2~l~ in 1(2). Since ~2~l~~ is satisfiable, we rewrite Ste(2)
in 1(2) once.

Then,

4. 1(3) = ~2~l~~~~ + ~2~l~~~~Sie(2)
(a) Submit the solving plan ~2~l~~~~ to the solver to solve the cor­

responding constraint and then check ~2~1~~~~ for satisfiability.
~2~l~~~~ is satisfiable. Its solved form m = 207+413/641 is then
computed.

(b) Whereas, ~2~l~~~~ is unsatisfiable. Thus we delete the term
~2~l~~~~ as well as ~2~1~~~~Sie(2) in 1(3).

Then,

5. 1(4) = e

The computation terminates.

5: Conclusion and Related Work

We have presented in this paper a computational scheme for CLP programs.
Due to the similar computational behaviour of all declarative constraint pro­
gramming paradigms the scheme is suitable for modelling implementations of
other declarative constraint programming systems such as constraint functional
logic programming systems [Darlington et aI9I]. The novelty of the system
comes from its concise separation of deduction (resolution) and constraint solv­
ing. Deduction is performed at compile time by partially evaluating the source
program. Constraint solving then becomes the main computational task at run
time. The control strategy over a computation is flexible and performed by ex­
ploiting fully the dynamic control information provided by constraint solving.
These ideas originated from C.L.Chang and J .R.Slagle's work on the connec­
tion graph method oftheorem proving [Chang It Slagle 79]. In their system, a
grammar-based inference mechanism is used as a resolution proving procedure.
Jiwei Wang has applied this mechanism to the implementation of Horn Clause

75

Logic [Wang 89] together with a graph-oriented unification procedure. From
an extensive investigation of these mechanisms we designed a general scheme
that handles the major issues in implementing CLP language - organising a
flexible control strategy without excessive run time overheads. We are using
the proposed scheme to implement a constraint logic programming system.

6: Acknowledgments

We would like to thank Dr. Joxan Jaffer for helpful discussions and Mr. Hen­
drich Lock for many discussions and comments. Yi-ke Guo would like to thank
Mr. Jiwei Wang for many invaluable discussions and particularly, for educat­

ing him in the computational models of Horn Clause Logic. His Ph.D research
on that topic directly inspired our work on the computational model for con­
straint logic programming systems. This research is partly supported by E.E.C.
Phoenix Basic Research Action.

76

References

[Chang & Slagle 79] Chang, C. L. and Slagle, J.R. "Using Rewrit­
ing Rules for Connection Graphs to Prove Theo­
rems", Artificial Intelligence, December 1979.

[Colmerauer 82] Colmerauer, A. "Prolog and Infinite Tree",
in Logic Programming, ed. K.L.Clark and S­
A.Tiirnlund, Academic Press, New York, 1982.

'[Colmerauer 87] Colmerauer, A. "Opening the Prolog III Uni­
verse", BYTE, July, 1987.

[Darlington et a186] Darlington, J., Field, A.J. and Pull, H. "The uni­
fication of Functional and Logic languages", in
Logic Programming: Functions, Relations and
Equations, ed. Doug Degroot and G. Lindstrom,
Prentice-Hall, 1986.

[Darlington & Guo 89] Darlington, J. and Guo Y. K. "Narrowing and
unification in Functional Programming" , in Pro-
ceedings of RTA-89, LNCS 355, Springer Verlag,
April 1989.

[Darlington et a189] Darlington, J., Guo, Y. K. and Lock, H. A Clas-
sification for Integrating Functional and Logic
Programming, Phoenix Project Report, Novem­
ber, 1989.

[Darlington & Guo 90a] Darlington. J, Guo, Y. K. "Constrained Equa­
tional Deduction", in Proceedings of CTRS90,
June, 1990.

[Darlington et a190b] Darlington, J., Guo, Y. K. and Lock, H. De-
veloping Phoenix Design Space, Esprit Phoenix
Project Report, April, 1990.

[Darlington et a191] Darlington, J., Guo, Y.K. and Pull, H. Introduc-
ing Constraint Functional Logic Programming,
Technical Report, Department of Computing, Im­
perial College, London, February, 1991.

[Dershowitz & Plaisted 86] Dershowitz, N. and Plaisted, D. A. "Equational
programming", in Machine Intelligence, eds.
D.Michie, J.E. Hayes and J. Richards, 1986.

[Dershowitz & Okada 88] Dershowitz, N. and Okada, M. "Conditional
Equational Programming and the Theory of Con­
ditional Term Rewriting", in Proceedings of
FGCS88, ed. ICOT. 1988.

77

[Fay 79] Fay, M. J. "First-order Unification in an Equa­
tional Theory", in Proceedings of 4th Workshop
on Automated Deduction, 1979.

[Guo 90] Guo, Y. K. Constrained Resolution, Technical
Report, Department of Computing, Imperial Col­
lege, London Nov.1990.

[Jaffar et a187] Jaffar, J., Lassez, J. L. and Maher, M. "Con­
straint Logic Programming", in Proceedings of
14th ACM symposium, POPL, 1987.

[Lassez et a187] Lassez, J. L., Maher, M. and Marriot, K. "Uni­
fication revisited". in Foundations of Deduc-
tive Databases and Logic Programming , ed.
J. Minker, Morgan-Kaufman, 1988.

[Martelli & Montanari 82] Martelli, A. and Montanari, U. "An Efficient Uni­
fication Algorithm", ACM TPLS, Vol 4 No.2.,
1982

[Saraswat 87] Saraswat, V.A. "The Concurrent Logic Pro­
gramming Language CP: Definition and Opera­
tional Semantics", in Proceedings of SIGACT-
SIGPLAN Symposium on Principles of Pro-
gramming Languages, pp49-63 ACM, New York,
1987.

[Smolka 89] Smolka, G. Logic Programming over Polymor-
phically Order-Sorted Types, Ph.D Thesis Uni­
versitat Kaiserslautern 1989.

[Steele 80] Steele, G .L. The Definition and Implementa-
tion of a Computer Programming Language
Based on Constraints, Ph.D Thesis, M.I.T. AI­
TR 595, 1980.

[Wang 89] Wang, J. W. Towards a New Computational
Model for Logic Languages, CSM-128 Depart­
ment of Computer Science, University of Essex,
March, 1989.

Time Representation in Prolog
Circuit Modelling

Yossi Lichtenstein 1 Bob Welham2 Ajay Gupta
laorOcom.imb.'Imet.HAIFASC, (no email), agOcom.hp.hpl.hplb

Hewlett-Packard Laboratories,
Stoke Gifford,

Bristol BS12 6QZ,
England

Abstract

This paper is an examination of some issues in domain ontology and of
various knowledge representation techniques for the temporal mode11ing
of digital electronic circuits in Prolog. It should serve as an example of
the advantages of such analysis, an area of relative neglect within the
logic programming community.

Describing the standard technique for mode11ing circuits in Prolog,
the representation of consecutive values on circuit ports is analyzed. An
example, quoted from Clocbin [Clocbin 87], is shown to impede com­
pozitionality by ulling different representations for input and output.

A range of possible time representations in this context is then given.
One extreme of this range is a list of values, which is an analogical repre­
sentation where time is implicit. The other end is a set of time-stamped
events, which is a Fregean representation with explicit time. Two exam­
ples which exploit the Fregean representations are described: an event­
driven simulator and a test vector generator.

1: Introduction

A model of computation that has been the focus of much analysis over the past
twenty years is that of controlled inference, in particular logic programming
and Prolog. The parts of this effort concerned with efficiency and perfor­
mance have almost exclusively dealt with issues of inference control, rather
than with characteristics and consequences of the domain ontology and the

2 Youi Lichtenatem may no" be contacted care of: IBM Scientific Centre, Technion City,
Haifa 32000, Iarae!.

2Bob Welham may DOW be contacted at: 31 Carnavon Road, Redland, Bristol BS6,
England.

79

knowledge representation techniques chosen by the logic programmer. Kowal­
ski [Kowalski 79] demonstrated, with his "slowsort" logic program for sorting
lists, that the wrong choice of ontology can have a devastating effect upon
efficiency, and that in many cases the loss of efficiency is irretrievable, no mat­
ter how smart the program interpreter. Even work in which a good choice of
ontology and representation was the main reason for impressive performance,
such as the PRESS program [Bundy It Welham 81] for solving symbolic alge­
braic equations, has been reported in terms of control of inference rather than
as an example of effective domain formulation. The knowledge representation
techniques employed in PRESS were reported as metalevel inference until anal­
ysed by Welham [Welham 88] who showed that the problem solving ability of
PRESS was due primarily to the metalevel formulation of the domain.

We attempt in this paper to slightly shift attention towards concern for
knowledge representation, as opposed to control of inference, by discussing
some issues of time representation in the restricted domain of modelling digital
electronic circuits in Prolog. This domain is attractive because of the wide va­
riety of tasks that can be performed using such models, for example simUlation,
verification, transformation, test generation and fault diagnosis. It gives scope
for the comparative analysis of different representations for different purposes.

In the next section some dimensions are identified in terms of which knowl­
edge representations may be analysed. Section 3 gives an analysis of various
ways of representing the signal value of a port over time in the terms explained
in Section 2. In Section 4 previous work in the field is examined and, in par­
ticular, the desirability of good temporal representation is demonstrated. In
Section 5 a brief report is made exploring the choices made in two practi­
cal Prolog implementations using specialised time representations. The circuit
modelling tasks addressed by these examples are event driven simulation and
test program generation.

2: Some Aspects of Knowledge Representation

One way to characterise representations is by their analogical and Fregean (or
direct and linguistic) properties [Sloman 78, Hayes 74]. The essential feature
of a Fregean representation is that all complex symbols are interpreted as rep­
resenting the application of functions to arguments. The phrase "the brother
of the wife of Tom" is analyzed as having the structure

80

The function the_wife_of is applied to whatever is denoted by Tom, pro­
ducing as value denoting some person. The function the_brother _of is applied
to this value, to produce its own value. Thus the whole expression denotes
whatever happens to be the value of the last function applied. Although the
complex Fregean symbol the_brother_oLthe_wife_oLTom has the word Tom
as a part, the thing it denotes (Tom's brother-in-law) does not have Tom as
a part. The structure of a complex Fregean symbol bears no relation to the
structure of what it denotes, though it can be interpreted as representing the
structure of a procedure for identifying what is denoted. Sloman writes:

"By contrast, analogical representations have parts which denote
parts of what they represent. Moreover, some properties of, and re­
lations between, the parts of the representation represent properties
of and relations between parts of the thing denoted. So, unlike a
Fregean symbol, an analogical representation has a structure which
gives information about the structure of the thing denoted."

A map is an obvious example of an analogical representation, while mathemati­
cal and logical constructions are mainly Fregean. [Mackinlay & Genesereth 85]
define a similar property of languages and call them implicit or explicit lan­
guage.

Another way to characterise knowledge is as declarative or procedural.
Knowledge represented as a Horn clause logic program may be interpreted
either declaratively, by Tarskian semantics, or procedurally, by interpreting
literals as procedure calls. Logic is essentially a Fregean language, with the
procedural interpretation making very clear the applicative nature of Fregean
representation.

Within a basically Fregean representation language such as logic, there is
still scope for localised analogical representations. The composition of a data
structure, for example a list, can be used to represent domain structure analog­
ically. In particular, in our domain of digital circuit modelling, it is sometimes
natural to represent successive clock ticks with recursive procedure calls over
recursive data structures. We say then that time is represented implicitly and
a feature of this is that there is no explicit representation of time available for'
general inference. The representation is specialised for a particular purpose.
For other purposes an explicit representation is needed to enable arbitrary
reasoning involving temporal entities as first class data objects.

81

3: Time Representation

The behaviour of a circuit is specified by the values on its ports and in general
these values change over time. The following are seven different representa­
tions of the changing value of a single port. Each is analysed in terms of its
analogical/Fregean aspects and its implicit and explicit contents.

Figure 1 is a purely analogical representation of the voltage on a port. The
.height of the diagram represents voltage levels and the length represents time.

Figure 1.

Figure 2 retains the analogical representations of both time and voltage but
abstracts some of the detail and gives idealised digital values on the port.

Figure 2.

Figure 3 introduces the first non-diagrammatic, Fregean representation.
High values are represented by 1 's and low by O's, but there is still an ana­
logical representation of time. The left to right sequencing of the 1 's and O's
represents the sequence of clock ticks. Consequently a change in value between
two consecutive digits represents a change of voltage, and their respective values
represent the direction of change. Thus values are explicit and pulses implicit.

0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0

Figure 3.

Figure 4 makes a further step towards Fregean time representation. A func­
tion symbol "x" is introduced with the intended interpretation that 3xO means
3 consecutive O's. The left-to-right sequencing of the representation now maps

82

monotonically rather than isomorphically to increasing time, so the analogical
time representation is weaker, the price of the more concise representation.
Time periods are now explicit and both pulses and individual values implicit.

2 x 0, 2 x 1, 4 x 0, 2 x 1, 1 x 0

Figure 4.

Figure 5 is a different Fregean step away from Figure 3, introducing the "c"
symbol whose intended interpretation is that OC1 denotes the value 0 at time
point 1. Here the left-to-right ordering maps isomorphically to incremental
time, and the 0 is in fact redundant. We introduce it as a step towards the
following representations. Values are again explicit here.

OC1, 0@2, 1C3, 1C4, 0@5, OC6, 007, 008, 1C9, 1C10, 0011

Figure 5.

Figure 6 is a development of Figure 5 which eliminates the redundancy and
gives a more concise representation by assuming that there is no change at
a time point which is not mentioned. As in Figure 4, the left-to-right repre­
sentation maps monotonically to time, but also now isomorphically to value
changes. Leading and trailing edges of pulses are now explicit, with values and
no-change periods implicit.

O@l, 1C3, OC5, 1C9, 0011

Figure 6.

Figure 7 differs from Figure 6 only by not being ordered with respect to
time, and gives a purely Fregean representation of a port's values.

1C9, 1C3, OC5, OC1, OC11

Figure 7.

83

Many more variations of the above representations are possible. What is
important is the adequacy of different representations for different tasks. The
diagrammatic Figures 1 and 2 are useful for quick human comprehension of a
port's behaviour. The still strongly analogical representation of Figure 3 is the
simplest representation for symbolic manipulation. It is a good representation
for processes which produce or analyze consecutive values, for example Prolog
direct execution of circuit specifications. The action of the Prolog interpreter
on the recursive module structure builds the list structure which represents the
temporal order of a port's values.

The more Fregean representations of Figures 6 and 7 are more concise, and
may be cheaper for random access to time points. Figure 6 gives a fast way to
access change events and to ignore instances of no change. This representation
is analogous to the standard way of handling sparse matrices.

The Fregean representations are used in two examples given in Section 5. An
ordered list of events is the basis for a simple Prolog event driven simulator. An
unordered set of events is used for constraint propagation in order to generate
test vectors.

4: Previous Work

Logic programming has been demonstrated as a suitable language for hardware
description in Prolog [Clocksin 87]' Concurrent Prolog [Suzuki 85, Weinbaum
&: Shapiro 87] and Parlog [Broda &: Gregory 84]. A good description of the
standard modelling technique is given by Clocksin [Clocksin 87), who defines
it as the Definitional Method. Each module of a circuit, including the whole
circuit, is represented by a non-ground Horn clause. If the module has n
ports, then the head literal of the clause has n arguments, each logical variable
representing the value of the signal at the corresponding port. Each literal in
the body of the clause represents a sub-module, and shared variables between
literals represent physically connected ports. Primitive components are defined
by clauses which specify their input/output relations.

For example, assuming the standard truth tables for and and xor gates, a
half adder may be defined:

halt~dd(A,B,Sum,Carry) '­
xor(A,B,Sum), and(A,B,Carry).

84

Clocksin uses this representation to solve a number of design automation
problems, e.g. gate assignment and signal flow analysis, employing techniques
of circuit rewriting and search through circuit specifications. In this context,
the representation of consecutive values on ports is of minor importance and
thus discussed only briefly. However, it seems that time representation in even
this brief description is problematic. The need for care over time representa­
tion emerges in sequential simulation of the circuit by direct execution of such
clauses. We take Clocksin's example of a divide-by-2 pulse divider (div/3)
specified by a not gate (not/2) and a D-type flip-flop (dff/4).

Yo truth table definition of not gate

not(O,1) .
not(1,O).

Yo dff(Input,ClockRiseOrFall, Output,lewState)
Yo note that the output is also the old state

dff(D,O,Q,Q).
dff(D ,1, _,D) .

div(Clk,CurrentState,lewState) .
not(CurrentState,D),
dff(D,Clk,CurrentState,lewState).

divide (0, _, 0).
divide([PIPs] ,I, [QIQs]) '-

div(P,I,Q), divide(Ps,Q,Qs).

Two sample queries below, taken from Clocksin, illustrate the knowledge
representation problem. If we assume that for both the input and output lists
that a 1 represents a pulse, that is a change of value, then the first example
is fine with six input pulses and three output pulses. However the second ex­
ample then shows three input pulses and-six output pulses. If, conversely, we
assume that the input and output are lists of values, then neither example is
correct.

?- divide([1,1,1,1,1,1],O,Q).
Q = [1,0,1,0,1,0]

?- divide([O,1,O,O,1,1,O,O],o,Q).
Q = [0,1,1,1,0,1,1,1]

85

An interpretation of the input and output terms which explains the above
examples is that the input is a set of pulses (i.e. changes) but the output
is a list of values. These two representations stem from the definitions of
the primitive components. The not gate is specified by the relation between
input and output values. In contrast, the D flip-flop clauses specify behaviour
on a rising or falling clock, that is on a change of value. So, in the term
dff(D,O,Q,Q) the 0 means a falling clock, while in the term not(O,1) the 0
means low voltage.

Using different representations for input and output impedes comp08ition­
ality which is highly desirable for circuit modelling. A rectification of the
problem may be achieved by redefining the df£ in value terms rather than pulse
terms.

dff(D,Clk,PreviousClk,_,D) .­
rising(Clk,PreviousClk), !.

dff(D,Clk,PreviousClk,Q,Q).

rising(O,1).

div(Clk,PreviousClk,Q,Z) .-
Dot(Q,D),
dff(D,Clk,ProviousClk,Q,Z).

divide ([p Ips] , PreviousP , I, [QIQs]) .­
div(P,PreviousP,I,Q),
divide(Ps,P,Q,Qs).

divide(O,_, _, 0),

We see below that with these definitions both queries now successfully di­
vide the number of input pulses by two, and input and output terms have the
same interpretation. We include this example to illustrate the benefits of con­
sistent representation.

1- divide([1,1,1,1,1,1],O,O,Q).
Q = [1,1,1,1,1,1]

Yo DO pulses
Yo so no pulses output

1- divide([O,l,O,O,l,l,O,O],O,O,Q).
Q = [0,1,1,1,0,0,0,0]

Yo two pulses
Yo one pulse

86

Time representation in circuit modelling is also discussed in the context of
concurrent execution of circuit specifications [Broda & Gregory 84, Suzuki 85,
Weinbaum & Shapiro 87]. Because we are mainly concerned with Prolog ex­
ecution of Horn clause circuit specifications, we will note only that the two
later works use a clock-driven mechanism whereby upon each clock tick ev-
ery module receives inputs and evaluates its outputs. Suzuki also introduces
time-stamps and Weinbaum and Shapiro discuss briefly the possibility of repre­
senting line values by events rather than states. Broda and Gregory use events
for simulation by direct execution. However, they depend on a suspension de­
tection primitive which is available only on a single processor implementation
of the language. Neither discusses the range of possibilities for representation
of port values which we attempt to describe in the following section.

5: Two Applications

5.1: Event Driven Simulation

One of the key insights in improving circuit simulation is that only a small
fraction of the ports of a circuit are active, or changing values, at each time
point. Breuer and Friedman [Breuer & Friedman 76] estimate that in gate
level simulation of complex circuits only 2-10% of the gates are active at each
simulation step. Event driven simulation acknowledges this fact and reduces
the computational complexity of simulation. Only changes in port values are
propagated, and gates,whose inputs are stable, are kept inactive. However,
simulation of circuits in Prolog is usually done by using direct execution and
by representing states and values rather than events. One exception is T-Prolog
[Futo & Szeredi 82] which is a full simulation language implemented in Prolog
and CLD.

We have implemented a proof workbench for event driven simulation. Our
motivation was to demonstrate the feasibility of this simulation technique by
simple meta-interpretation in Prolog, and to compare empirically its efficiency
with that of direct simulation using the definitional method. It has been found
that for circuits consisting of up to several dozen gates direct execution is
faster than our event driven simulator. However, for large circuits the inherent
efficiency of event driven simulation overcomes the overhead of the required
non-standard interpretation. For example, a gate level flat implementation of
the SN74181 arithmetic logic unit [Texas 78] with 120 gates is simulated by the
event driven interpreter twice as fast as by direct execution.

87

Our modelling approach is to retain features of the definitional method (Sec­
tion 4) as much as possible, and to alter only the ontology and representation of
temporal entities. It is clear that a temporal ontology and representation based
on events rather than states is needed in order to express easily event driven
simulation computations. Of the representations explained in Section 3, the
"list of events" representation of Figure 6 seems to minimise the modification
needed to the definitional method. The only change in circuit representation
needed is the replacement of lists of values by "lists of events". The other
aspects of the definitional method of circuit modelling are kept unchanged.
Hierarchical modules are represented by first order non-ground Horn clauses,
and ports are represented by variables.

The ability to reason about events has its price. A meta-interpreter is
needed and the specification of primitive components is complex and procedu­
ral. In order to illustrate these points let us reconsider the pulse divider of the
previous section. Consider, the simplest case where two pulses are divided into
one. First, the query copied from the previous section, where both input are
lists of values:

1- divide([O,1,O,O,1,1,O,O],O,O,Q).
Q = [0,1,1,1,0,0,0,0]

Yo two pulses
Yo one pulse

The same query, expressed in terms of time-stamped values:

1- divide([OGO,1G1,OG2,1G4,OG6J,O,O,Q).
Q = [OGO,1G1,OG4J

Yo two pulses
Yo one pulse

Let us consider part of the pulse divider and describe how the above result
is achieved:

div(Clk,Q,Z) :- not(Q,D),
dff(D,Clk,Q,Z).

The direct Prolog execution is used both for unfolding the structure into
primitive components and for simulating the behaviour. Weinbaum and Shapiro
use the terms structural reduction and functional simulation [Weinbaum &
Shapiro 87]. The structural reduction phase unfolds the div goal into the two
goals not(Q,D) and dff(D,Clk,Q,Z) which represent two primitive compo­
nents. The functional simulation uses the definitions of the components (e.g.
not (0,1). and not (1,0) .) to generate the outputs of the circuit.

88

In the event driven simulation, the structural reduction phase replaces
each goal representing a component by a goal with a unique name, an in­
ternal state and a list of components which may be affected by it. So the
not(Q,D) literal is replaced by not (name (not1) ,Q,D,state(O), [dtf1]) and
the dff(D,Clk,Q,Z) by dff(name(dff1),D ,Clk,Q,Z,state(O), [noti]). The
dff literal, for example, includes the component's name dffi, its input and
output variables D, Clk, Q and Z, its internal state and the fact that the not1
component is connected to its output.

A list of such goals, one for each component, is then used to represent the
state of the circuit and is manipulated during the functional simulation phase.
In the direct execution technique this set is the Prolog resolvent; however, in
order to schedule goals correctly, the event driven simulator needs to handle
this set as a first-class data object and this entails a meta-interpreter.

In order to get the correct scheduling of goals, a data structure represent­
ing events is also needed. The events themselves (e.g. 005) are propagated,
by Prolog unification with the variables representing component ports. Each
structure representing a single event includes a list of component names whose
corresponding goals need to be activated at the simulation step. For example
the term event (6, [dff ,not1]) represents the fact that at time point 5, the
goals representing the components dff1 and not1 should be activated.

Using the State set of goals and the EventsQ data structure, this is the
top-level of the event driven simulator:

simulation(EventsQ,State) :- empty(EventsQ).
simulation(EventsQ,State) :­

next_event(EventsQ,KoreEventsQ,lextEvent),
step(lextEvent,KoreEventsQ,

lewEventsQ,State,lewState),
simulation(lewEventsQ,lewState).

step(event(_,[]),EventsQ,EventsQ,State,State).
step(event(Time,[CompIComps]),EventsQ,

lewEventsQ,State,lewState):­
component (Comp,Time,EventsQ,

TempEventsQ,State,TempState),
step(event(Time,Comps),TempEventsQ,

lewEventsQ,TempState,lewState).

component(Component,Time,EventsQ,
lewEventsQ,State,lewState) .­

call(Component,Time,State,lewState,Event),
insert(Event,EventsQ,lewEventsQ).

89

The simulation predicate iterates over the elements in the events queue.
The step predicate iterates over components in an entry in this queue (i. e.
event (Time, Components». The component predicate handles the compo­
nents at a time step: the call predicate retrieves from the State the goal
which represents the Component, executes this goal and updates the state (into
lewState); it also generates an entry into the events queue (Event) which is
inserted into lewEvents.

The meta-interpretation described briefly above handles goal scheduling.
However, as already mentioned, signal propagation is still done by Prolog uni­
fication as in direct execution. Ports of components are represented by Prolog
variables, and during the functional simulation these variables are instantiated
to lists of time-stamped values.

The definitions of primitive components must include event sensitive be­
haviour in addition to their declarative specifications. Consider as an example
one clause taken from the dff definition:

dff(lame, [DGT1!Ds], [1GT2IClks],
Q,Z,state(DldD),Connections) .-

T2 < T1,
dff (lame, [DtT1IDs] , Clks ,

Q,DldD,state(DldD),Connections).

This clause handles the case where there are events on both inputs (D and
Clk) but the clock event is earlier (T2 < T1). The clock rises (1tT2) and so
there is no change on the output (Q), but there is a new internal state (DldD
replaces Z).

The computational overheads of this event driven simulation thus include
both the non-standard interpretation and the more complex modelling of prim­
itive components. This is inefficient for small circuits, as the example of the
pulse divider shows. However, for large circuits and complex simulations, both
execution time and output readability benefit from the explicit time represen­
tation and event driven simulation modelling.

5.2: Test Program Generation

The second application to be considered is the generation of test programs for
sequential circuits. Given a circuit and a fault model on a specified component,

90

the problem is to find a test program, that is a sequence of input vectors, which
can be guaranteed to produce different outputs from a correct circuit and one
with the specified fault.

We have implemented in Prolog a proof workbench which generates such
test programs to exercise stuck-at faults for circuits with Boolean logic gates
and unit delay elements. The problem is then that of extending the D-algorithm
[Roth et a167] to cover this restricted class of sequential circuits. The D­
algorithm, designed for combinational circuits where temporal modelling is
not an issue, uses two symbolic values, d and not d, in addition to 0 and 1, to
denote signal values. A specified component is hypothesised to be stuck at d.
The task of the D-algorithm is then to compute an input test vector which will
ensure that not d is propagated by this component when functioning correctly,
and also that d (or not d) appears in the visible output of the circuit. This
ensures the required differential behaviour between circuits with and without
the fault. The d symbol may then be independently instantiated to both 0 and
1 to give test vectors for both stuck-at-O and stuck-at-1 faults.

Because components of sequential circuits can have internal states and also
because they can cause signal propagation delay, questions of time represen­
tation arise in our application. Also a sequence of test vectors rather than a
single vector is needed. Our solution is a development of the method described
in [Gupta It Welham 88]. The test program is generated not extensionally, but
instead intensionally. A predicate P is computed such that any test program
T for which P(T) holds is guaranteed to exercise the fault. We use constraint
propagation techniques to compute P.

The constraints are statements about signal values on lines at specific time
instants, and signal propagation is modelled by constraint re-writing. The
rewrite rules are component models such as:

dff(Input,Clock,State)GTiae =
if rising(Clock)
then Input t Time
else dff(Input, Clock, State)t(Time-l)

The above example is the component model/rewrite rule used for signal
propagation through a D flip-flop and is interesting for our present purposes
because of the time representation involved. Both the constraints and the
component models use the Prolog t functor to time stamp expressions denot­
ing signal values. Note that using the above component model as are-write
rule, either left-to-right or vice versa, can introduce new time instants into the

91

constraint list. Repeated use of such rules for different components and at dif­
ferent time instants rapidly leads to many distinct time instants being present
in the constraint list in an arbitrary way.

To generate a test program to detect a stuck-at-d fault on line (line), the
list of constraints is initialised to the singleton list [(1, ne) 10 = not d] which
denotes that (line) at time 0 has the value not d. Setting the time value to 0 is
arbitrary but computationally convenient. Making the single fault assumption
and using the components models as forward propagating re-write rules for
constraints, constraints are then computed on signal values at non-negative
time instants which ensure that the fault, that is the d symbol, appears in the
circuit output at some future time. The d symbol must also be back-propagated
through circuit components to ensure that it appears in the test program. The
models of the components are used now as right-to-Ieft backward-propagating
re-write rules to compute constraints on values of lines at non-positive times.
The goal is to compute a consistent set of constraints at non-positive times
which mention only values on controllable inputs. There are many choice-points
in the search for this goal, corresponding to different ways of back-propagating
signals through components. Our implementation works interactively with
the user to intelligently explore this search space and compute the required
constraint list. This list then represents the required predicate P over the
inputs.

For this circuit modelling application, because of the need to reason about
and randomly access many different time instants in an arbitrary way, we have
demonstrated the need for a Fregean, explicit time representation. In this
respect it is similar to the event driven simulation application described above.

6: Summary

We have engaged questions of knowledge representation for time in the spe­
cialised field of digital electronic circuit modelling in Prolog. We have intro­
duced into the analysis some categorisations of knowledge representation which
are well known in general AI but hitherto relatively unexplored in this field.
We have identified some problems with previous work and demonstrated solu­
tions. We have shown the need for, and the utility of, employing different time
representations for different tasks in circuit modelling, and have described two
practical implementations benefiting from non-standard time representation.

92

References

[Breuer & Friedman 76] Breuer, M. A. and Friedman, A. D. Diagnos-
tics and Reliable Design of Digital Systems,
Computer Science Press.

[Broda & Gregory 84] Broda, K. and Gregory, S. "Parlog For Discrate
Event Simulation" , in Proceedings of The In-
ternational Logic Programming Conference,
Upsala, July 1984.

[Bundy & Welham 81] Bundy, A. and Welham, R. K. "Using Meta­
Level Inference for Selective Application of
Multiple Rewrite Rules" , in Algebraic M anip-
ulation, AI Journal 16 pp 189-212, 1981.

[Clocksin 87] Clocksin, W. F. "Logic Programming and Cir­
cuit Analysis", in Journal of Logic Program-
ming, March 1987.

[Futo & Szeredi 82] Futo, 1. and Szeredi, J. "A Discrete Simulation
System Based on Artificial Intelligence Meth­
ods", in Discrete Simulation and Related
Fields, ed. Javor, A., North-Holland, 1982.

[Gupta & Welham 88] Gupta, A. and Welham, R. K. "Functional Test
Generation for Digital Circuits", in Proceed-
ings of AIENG-88, Palo Alto, August, 1988.

[Hayes 74] Hayes, P. J. "Some Problems and non-Problems
in Representation Theory", in Proceedings of
AISB Summer Conference, University of Sus­
sex, July 1974.

[Kowalski 79] Kowalski, R. Logic for Problem Solving, pp
120-121, North Holland, 1979.

[Mackinlay & Genesereth 85] Mackinlay, J. and Genesereth, M. R. "Expres­
siveness and Language Choice", in Data and
Knowledge Engineering, Vol. 1, pp 17-29,
North-Holland, 1985.

[Roth et a167] Roth, J. P., Bouricius, W. G. and Schneider,
P. R. "Programmed Algorithms to Compute
Tests to Detect and Distinguish Between Fail­
ures in Logic Circuits" , in IEEE Transactions
on Electronic Computers, Vol.EC-16, No.5,
pp 567-580, October, 1967.

[Sloman 78]

[Suzuki 85]

[Texas 78]

[Weinbaum & Shapiro 87]

[Welham 88]

93

Sloman, A. The Computer Revolution in Phi-
losophy, The Harvester Press, 1978.

Suzuki, N. "Concurrent Prolog as an Efficient
VLSI Design Language", in IEEE Computer,
February 1985.

The TTL Data Book, Texas Instruments,
1978.

Weinbaum, D. and Shapiro, E. "Hardware
Description and Simulation Using Concurrent
Prolog", in Concurrent Prolog - Collected
Papers, ed. Shapiro, E., MIT Press, 1987.

Welham, R. K. ''Declaratively Programmable
Interpreters and Meta-Level Inference", in
Meta-Level Architectures and Reflection,
eds. Mares, P. and Nardi, D., North Holland,
1988.

Interacting with the Logic of the
Problem: Specifying and Prototyping

Interactive Systems

Chris Roast
chrisrOcms.scp.ac.uk

Human Computer Interaction Group,
Sheffield City Polytechnic,

100 Napier Street,
Sheffield, Sl1 SHE,

England

Abstract

The benefits of Logic Programming in system development are that it
enables the domain of an application to be described declaratively using
Horn clauses, and that such a description can be interactively interro­
gated in order to examine its logical consequences. This supports the
iterative development of an application domain theory based on proto­
typing. These benefits do not necessarily transfer to the development of
highly interactive applications since, in addition to describing an appli­
cation's domain theory, we are faced with having to describe the mecha­
nisms of interaction with it. This normally has to be expressed in terms
of side-effects.

This paper describes an extension to conventional logic programming
designed to combine requirements of interface development with the ben­
efits of logic programming. The extended logic is termed "interaction
logic". An interaction logic program describes how the user is able to
navigate an otherwise passive application domain theory.

1: Introduction

Logic programming benefits system design by providing a means of represent­
ing an application domain in a logical framework that can be interactively
interrogated and modified. For example, in the domain of text editing we can
specify operations upon text, represented as a list of terms, thus l :

1 We assume that the predicate character /1 holds for terms which are acceptable text
characters.

1* add_char(C. I. Text1. Text2) hold. if
text Text2 i. the a. t.xt T.xt1
but for tera C ins.rted at position I.

add_char(C. O. T.xt. [CIT.xt]) :- charact.r(C).
add-<:har(C. succ(I). [DIText1]. [DIText2]) .­

add-<:har(C. I. Text1. T.xt2).

Program 1.

1* remov._char(I. T.xt1. T.xt2) hold. if
text Text2 i. the same a. t.xt Text1
but for tera at position I b.ing r •• ov.d. *1

remove~har(I. T.xt1. Text2) :­
add_char(C. I. Text2. T.xt1).

Program 2.

95

These clauses provide a precise specification of generalities about text ma­
nipulation. Being a Horn clause program, consequences of the axioms can
be examined interactively by posing queries. This ~ot only builds confidence
in a developing program but also helps with its validation i.e. unintended
consequences often can be identified. Therefore, development can proceed
based upon logical comprehension and prototyping [Davis 82, Kowalski 84,
Komorowski Iz: Maluszyuki 87]. This is particularly appropriate in human com­
puter interface design [Boehm Iz: Gray 84].

For an interactive system it is necessary to describe what information is
output to the user and how the user's inputs relate to operations such as those
of Programs 1 and 2. For this example2, we shall represent output and input
by a list of terms to(C. V), where it is intended that V represents the system·s
output in response to the input C, and we shall represent a state of the appli­
cation by a term state(T .p), where T is text and P is the cursor position in
T:

2We ulUIIle that the predicate Yi •• /2 holds when its second argument is a complex term
representing a possibly restricted portrayal of its tint argument

96

/* means(To, S1, S2) holds if
the input and output list To effects state
S1 in such a way to bring about state S2. */

means([], S, S).
means([to(C,V)ITo], state(T1,P), S) '­

add_char(C, P, T1, T2),
view(state(T1,P), V),

means(To, state(T2, succ(P», S).
means([to(backspace,V)ITo], state(T1,succ(P», S) '­

remove_char(P, T1, T2),
view(state(T1,succ(P», V),
means(To, state(T2, P), S).

Program 3.

As with the previous programs, Program 3 can be examined both as a
set of axioms and in terms of its mechanically determined consequences, thus
supporting specification and interrogation. Despite this, the interrogation of
the formal properties of an interactive system is not sufficient for its valida­
tion. The validation of interactive systems is an empirical activity requiring
behavioural simulation. For instance, if we ask whether the system property
"no state can be reached when backspace is input and the pointer is zero"
conflicts with requirements, we will require some form of behavioural illustra­
tion of this property. In order to achieve this it is necessary to link the Horn
clause description to a behavioural description in some way. In this respect the
interactive nature of Program 3 is under-specified, since the manner in which
a computation associated with the program proceeds is not defined.

The extended logic language described in this paper (interaction logic) is
a means by which the interactive nature of an application can be accurately
represented and simulated. The accurate representation of interaction in a log­
ical framework makes explicit the relationship between an application domain
and interaction with it, and facilitates program development respecting both.
Complementing this, an ability to run an interaction logic program supports
empirical validation.

At present interaction logic is being used to support research into Human
Computer Interaction (HCI), concerned with both rational and empirical de­
velopment techniques.

In the following section we describe the motivation behind the development
of interaction logic and previous treatments of interactive/procedural consider-

97

ations in logic programming. The basic ideas behind interaction logic are then
discussed, using a simple example. The syntax of interaction logic programs is
given and their semantics summarised. The application of interaction logic in

Hel research is described.

2: Motivation and Background

2.1: Development of Human Computer Interfaces

Human computer interlaces provide a means by which users can exploit a com­
puter's power in order to solve various problems. The computer power ex­
ploited may be computational, as with numerical analysis, or representational,
as with transferring written text into a computer readable form. Interlace de­
sign therefore addresses the ease with which this power can accessed and cor­
rectly comprehended by users. The design alternatives effecting these concerns
are complex and varied. For instance, the appropriateness of the commands
provided by a system, their configuration in, say, a menu structure or com­
mand language, and their representation by icons or text can be questioned
since each of these issues can effect a system's use. An understanding of users
is often sought which involves similar, if not more, complexity. For instance,
successful use can be seen as dependent upon the users' perceptual capabilities
and motor skills, their behaviour and treatment of goal and task when problem
solving, and the nature of their problems and working environment. Due to
the inaccuracy of individual theories addressing these issues and the complex­
ity of attempting to combine them, interlace design has come to depend upon
prototype based development.

Despite the complexity of the human-side of the interlace it is possible to
model formal system principles which support interactive use [Dix &; Runciman
85, Harrison et al 89, Harrison &; Dix 90]. Such principles can avoid hard to
repair mistakes in conventional software development.

For example, one such formal property is termed display predictability. It
holds if a system's future behaviour, in principle, can be determined from the'
system's current output.

Definition 1 (Display Predictability) Given a set of possible inputs K
and a function display over all possible sequences of inputs (K"), such
that display(p) represents the display shown after the inputs p E K", a

98

system is display predictable iff

'11', q, T E K*display(p) = display(q) -+ display(pT) = display(qT)

Applied globally such a principle may be considered rather stringent, yet
the same notion can be applied to suitable subsets or abstractions of the system
[Roast It Wright 90, Dix 91].

It should be clear from this example that we are not necessarily addressing
specific issues such as presentation or command language design but rather
the generalities across these that, to varying degrees, embody principles of
usability. This level of generality is retlected in the design of interaction logic.

2.2: Existing Logic Programming

There is a variety of ways of introducing interaction into a logic programming
framework, and in this section we review possible mechanisms and emphasise
important issues3 .

The basic form of interaction provided by conventional logic programming
is that of query formation. This refers to the submission of pure logical queries
to a logic program in order to assist with problem solving. The system re­
sponds to a query with those variable SUbstitutions, if any, for which the
query is a consequence of the program. This results in a form of interac­
tion which is highly tlexible yet fails to support the user in various problem
solving activities. For inStance, this form of interaction cannot effect system
state changes that are frequently required during interaction, such as when
editing. [van Emden et a185], [Sergot 83] and [Manchanda 88] take this form
of interaction as primary and improve upon it in various ways: making it more
suited to problem solving, automatically incorporating information specific to
the user, and enabling committed changes to state, respectively.

These approaches are well suited to incorporating user specific information
into logic programs, but fail to support interaction in the following respects:

1. The interactive behaviour of the system is determined by the proof pro­
cedure adopted. As a consequence interactive behaviour is hard to rea­
son about. This prevents the purposeful structuring of interactive be­
haviour in a prescribed and predictable manner. [Wolstenholme 90] and
[Southwick 88] illustrate the use of meta-level information to structure
'Query the User' [Sergot 83];

3The use of conventicma1 extra lopca1 input/output primitives and Prolog's procedural
interpretation is sufliciently distant from declarative progrumning that we will not consider
it u an alternative.

99

2. Inputs by the user are assumed to be representative of a single unchang­
ing state of affairs. In the same way as interaction frequently involves
imposing state changes upon the system, the user's understanding of a
problem changes. Therefore it is important to recognise the larger con­
text which determines input ([Ohki et al 86] and [van Emden et al 85]
do address this point).

The main alternative to query formation is to represent interaction in terms
of states of affairs and transitions between them (as in Program 3). This ap­
proach is intuitively closer to the nature of interaction since it can explic­
itly represent the operations and ordering of interaction. Situation Calculus
[McCarthy &; Hayes 69], Event calculus [Kowalski &; Sergot 86] and meta-level
programming [Bowen 85] provide a means of representing changing states of
affairs in which the situations/theories are reasoned about explicitly. [Moss 81]
has illustrated that such representations are closely related to definite clause
grammars. Dynamic and modal logics [Harel 79, Gabbay 87) and their imple­
mentations [Manchanda 88, Gabbay 89] provide an alternative form of reason­
ing about change, with a semantic interpretation based on states and transi­
tions.

These approaches are well suited to reasoning about possible sequences of
events within their intended domain, yet they can fall short of our requirements
in the following respects:

1. The interactive behaviour can be a product of the representation plus
extra-logical primitives or assumptions about execution. Thus, it is hard
to reason about interactive properties of the system. This is particularly
evident in the use of partially instantiated structures as input/output
streams, where the synchronised interleaving of input and output is highly
dependent upon extra-logical primitives [Bowen 85, Shapiro 87].

2. The actual performance of interactive operations and commitment to
their consequences, as opposed to reasoning about their performance, is
frequently not accommodated.

3. The expressive power of such executable formalisms is frequently at odds
with performance when prototyping interactive behaviour.

These points lead the way to the basic ideas on which interaction logic is based.

100

3: Interaction Logic

3.1: The Basic Ideas

Human computer interaction supports the user in the performance of particular

tasks, by an exchange of closely related inputs and outputs; each output by the

system assists with determining the next input made, and each input to the

'system assists with determining the next output. In this respect system output

serves both as an information source and as an indication of the opportunities
available to the user (i.e. the ways in which they may satisfy their goals). The

fact that an interface supports the user in this way is reflected in interaction

logic by having the system output represent the opportunities available to the

user. Thus, the entire display is treated as a product ofthose input alternatives

which the user can engage in, and an input event represents a selection of one

of the alternatives. In interaction logic a single form of expression represents
both a feature of the system's output and a corresponding input. This level of

description abstracts over physical events and devices.

Interaction logic is based on the fact that interactive programs are by their

nature committed - by which we mean interaction can impose changes to a

system. (This can be contrasted with the imperfection of interactive usage

which frequently results in the user wishing to avoid undue commitment to
change.) This must be distinguished from programs which support reason­

ing about events yet do not adequately represent their performance, such as

Program 3.

We propose that input and output events be directly related, and that

reasoning within a domain of application be distinguished from committed

operations in the domain. Reflecting this, interaction logic combines two levels

of description; descriptions of the logical relations which represent a theory of

the application domain, and descriptions of the alternative types of interaction

which can take place (termed an interacti1Je description).

3.2: General Introduction

An interaction logic program consists of a set of Horn clauses and a set of
interacti1Je clauses. We shall assume the conventional definition of Horn clause

(as a Definite clause) and logical conjunction, atom, predicate and term (as in
[Apt It van Emden 82]).

101

Definition 2 (Interactive Clause) An interactive clause 0 is defined by:

o ::= {A}++-C

where A is an interactive atom (consisting of an interactive relation and
a number of terms as arguments) and C is an interactive conjunction.

An interactive clause relates an interactive atom to an interactive conjunction.
It represents the fact that the former can be interpreted as the latter.

Definition 3 (Interactive Conjunction) An interactive conjunction Cis
defined4 by:

C ::= N{A} I N{A}(C)

The interactive conjunction C represents inputs to a system in terms of
a sequence of logical conditions and input events. The conditions are rep­
resented by conventional logical conjunctions (N) and the input events are
represented by interactive atoms (A). In particular, an interactive conjunc­
tion N,{A,}N2{A2} ... Nn{An} represents any sequence of inputs A,A2 ... An,
where the condition (N, A N2 A ••• A Nn) is true.

A single interactive atom that appears on the left hand side of an interactive
clause represents a sequence of atoms as defined by the right hand side inter­
active conjunction. Those interactive atoms which do not appear on the left
hand side of any interactive clauses will be termed primitive and correspond
to atomic input events.

In addition to representing atomic input events, primitive interactive atoms
have a reciprocal significance for the output of a system. If at some point in
an interaction an input event is available to the user, then the system's output
portrays the primitive interactive atom representing it. Which inputs are made
available to the user is determined by a set of interactive goals (represented by
a set of interactive conjunctions).

The following interaction logic programs will serve as a simple example of
how interactive behaviour can be described. Interaction Logic Programs 4 and
5 describe a text editor with the same functionality as the Program 3 and em­
ploying the same state representation.

4 We .ka.ll omit tke ,a.rentkele. in tke followifl,g eza.m,lu. Wken a. logica.l conj1l.nctiofl, i,
tke couta.nt true it mOor be omittell.

102

,* edit(S1,S2) describes
the inputs which perform an edit operation
on state S1 which results in state S2. *,

(edit(state(Tl,P),state(T2,succ(P») ~
view(state(Tl,P),V) A add~har(C,P,Tl,T2)
(insert (V ,e»)

(edit(state(Tl,succ(P»,state(T2,P») ~ (4)
view(state(Tl,succ(P»,V) A
remove~har(succ(P), Tl,T2)

(backspace (V»)

Program 1 described a space of text operations; Program 4 exploits these
operations by defining an interactive predicate edit/2 in terms of insert/2
or backspace/I. A sequence of such edits is defined by edits/2 in Program
5, this includes another interactive predicate finished/l which completes the
sequences of edits.

,* edits(S1,S2) describes
the inputs which perf or. a nuaber of edit
operations upon S1, resulting in S2. */

(edits(S,S)) ~
view(S,V) (finish(V») (6)

(edits(S1,S2») ~
(edit(Sl,S»)(edits(S,S2»)

The primitive interactive atoms determine the manner in which possible
operations are portrayed to the user. If more information is contained in the
primitive interactive atoms then the display will be more informative and the
possibilities made available more defined.

3.3: Model Theoretic Semantics

We can provide a model theoretic semantics for interaction logic which, by its
nature, will be more complex than a Herbrand model since it will have to relate
atoms to the input sequences which they can denote. Thus, the model for an
interaction logic program will have similarities with trace models of process
algebras [Hoare 85].

103

Definition 4 (Interactive Interpretation) Given

A universe (U), which is the set of all ground tenns that can be formed
from the constant and function symbols appearing in the program;

A logical base (B), the set of all logical atoms formed using the pred-
icates in the program and grounded terms in U.

An interactive base (A), the set of all interactive atoms formed using
the interactive relations in the program and grounded terms in U.
A subset of A will be the set of ground primitive interactive atoms
(written K).

An interactive interpretation of an interaction logic program is repre-
sented by a triple (M,F, 1') where:

M is a subset of the logical base B, termed a static interpretation;

F is a relation between interactive atoms (A) and the sequences of
interactive atoms (A-) that they represent, termed a full interactive

interpretation. The following conditions hold for a full interactive
interpretation:

- if Q F bl ••• bn. and bt F CI ••• Cm

then Q F b! ••• bt_IC1 ••• Cmbt+1 ••• bn.i

- QFQ.

l' is a relation between interactive atoms (A) and the sequences of
interactive atoms (A-) that can follow from them, termed a partial

interactive interpretation. The following conditions hold for a partial
interactive interpretation:

- if Q l' bl ••• bn. and bn. l' CI ••• Cm

then Q l' bl ••• bn.-I CI ••• Cm;

- if Q l' bl ••• bn. and b t F CI ••• Cm

then Q l' bl ••• bt_1 CI ••• Cmbt+ I ••• bn.i

-Q'PQ

Definition 5 (Truth) An interaction logic program is true in an interac-
tive interpretation (M,F, 1') iff each Hom clause is true in M (we take
this to be as defined in [Apt tJ van Emden BB) taking U as the universe),
and each interactive clause is true in (M,F,'P). 'An interactive clause is

104

true in (M,.r, P) iff each ground instance is. A ground interactive clause:
(a) ++-N 1 (al)N2(a2) ... Nn(an) is true in (M,.r,P) iff:

if (Nl A N2 A ... A Nn) is true in M, then a.r al .. , an;

if (Nl A N2 A ... A Ni) is true in M, then a POI ... ai, 0 ~ i ~ n.

Definition 6 (Model and Minimal Model) If a program is true in an
interpretation then that interpretation is said to be a model. A minimal
model is one in which M, .r and P are minimal for the above conditions.

The reason for including both a partial and full interactive interpretation
within the model is in order to distinguish important types of interactive pro­
gram. An interaction logic program (with an initial goal a) will be said to
terminate successfully after an input sequence il ... in(E K*) if a .r il ... in.
An interaction logic program will be said to partially satisfy a goal a after an
input sequence il ... in if 0 P il ... in. The use of both P and .r would be
redundant were it not possible that some input sequence can partially satisfy
an initial goal while no further input will lead to a successful termination (we
describe an interaction logic program for which this is possible as being inter­
actively divergent). Also, it is possible that some input sequence can partially
satisfy an initial goal while no additional input will (we describe this situation

as unsuccessful termination).

3.4: Output

As described above, interaction logic is based on the notion that the inputs
and outputs in human computer interaction are directly related. A primitive
interactive atom represents both a feature of the system's output and a cor­
responding input. Thus, ideally primitive atoms include rich contextual infor­
mation clarifying their relevance within the application, and during interaction
the user chooses amongst a number of ground primitive atoms made available.

After the input sequence il ... in-I to a program with the initial goal a, in

is present in the output iff a P il ... in

3.5: Operational Semantics

The operational semantics for an interaction logic program will be defined in
terms of transformations upon a set of interactive goals. For a program with the

105

interactive atom (a) as its goal the initial goal set will be {(a)}. At any point
in an interaction with a program the state of the interaction is represented by

a set of goals G, if the next input is i E K then the state which follows G is

step(G. i).
The function step is defined as follows:

(Cm ••• Cl)a E step(G. i) iff Nl (a~}CI E G
where:

there is a, possibly empty, sequence of clauses (with no variable

symbols in common)

and

there is an answer substitution a to the logical conjunction

derived by a refutation procedure.

() E step(G. i) iff NJ(aD E G where there is an answer substitution to
the conjunction (a~ = i)" Nl derived by a refutation procedure.

3.6: Output

If at some point in an interaction the goal set is G, then the primitive interactive
atom i' will be part of the output iff step(G. i) =f:. 0, for any i matching i'.

3.1: Interaction Logic and Concurrent Prolog

Interaction logic has associations with concurrent prolog since it can be treated
as computation with guarded Horn clauses [Shapiro 87]. Non-primitive inter­
active atoms represent guards defined by the programmer and primitive inter­
active atoms represent primitive guards evaluated by the user of the interactive
system. Interaction logic differs from concurrent prolog in this respect by its
syntactic distinction between Horn clauses with no guards, and interactive
clauses necessarily containing guards. In addition the computation has to fulfil
specific requirements - every alternative possibility has to be evaluated up to

106

the next primitive interactive atom, since the choice of alternatives is governed

by the user.

3.8: Soundness and Completeness

Soundness and completeness results relating the operational and model theo­
retic semantics exist [Roast 91]. Note that the operational semantics for inter­

action logic are defined with respect to some refutation proof procedure, the
soundness and completeness of which has significance for the following results.

Soundness - for a program with a minimal model (M.F.P) and a step
function employing a sound refutation proof procedure, it is the case that:

If step(... (step({{a)}. il). i2) ... in) :/; 0 then a P il ... in
and

If {} E step(... (step({{a}}. il). i2) ... in) then a F il ... in

Completeness - for a program with a minimal model (M. F, P) and a step

function employing a complete refutation proof procedure, it is the case that:

If a P il ... in then step(... (step({{a)}, il). i2) ... in) :/; 0
and

IfaFil ... in then {} E step(... (step({{a}}.il).i2) ... in)

More detailed results concerning correspondence between model based and
operation semantics are under investigation.

4: Work with Interaction Logic

4.1: Implementation

An interpreter for interaction logic has been written and is being used to sup­
port the HCI research described. The interpreter is written in SICStus Prolog
and can operate at a textual or graphical level. At the textual level the in­
terpreter generates outputs consisting of the primitive interactive atoms repre­
senting a display and requires the user to enter the atom they wish to commit

107

as input. At the graphical level, a foreign language interlace to a C graphics
library is used in order to render graphical displays based on primitive interac­
tive atoms and interpret mouse and keyboard events as committing particular
atoms.

The efficiency of the interpreter is still under investigation. Since the in­
teraction logic finds all solutions to a goal up to the first primitive interactive
atoms, a program transformation method similar to that of [Ueda 86, Ueda 87]
is being considered as a means of improving efficiency.

4.2: Verification

To exploit interaction logic as intended, we have to ensure that formal inter­

active system properties of interest can be expressed in terms of th~ presented
semantics. From this it is possible to verify interactive properties of existing in­
teraction logic programs and construct interaction logic programs with known
interactive properties.

For example the abstract interaction property of display predictability (de­
fined earlier) will be satisfied by any program with the following properties:

• The initial goal is one interactive atom;

• Every interactive atom appears at most once in the body of at most one
interactive clause;

• For every ground interactive clause

in the program, it is that case that:

for 1 ~ i < n

As mentioned earlier this property is normally unrealistic. More realistic
predictability properties can be determined based upon the notion of a pro­
gram's monotone closure [Oix 91, Roast 91].

Systems developed which adhere to known formal properties are being used

in empirical evaluation, thus enabling interactive system development within
a formal framework without the exclusion of significant empirical feedback.

108

5: Conclusions

The interaction logic described in this paper illustrates an extension to con­
ventionallogic programming with specific constructs for describing interactive
systems. This supports the specification and behavioural simulation of inter­
active systems in general.

The approach to describing interaction put forward by interaction logic is
.sufficiently general to exploit any deductive system as a means of describing

the application domain theory. Thus, extended Horn clauses, and other more
expressive forms, may be employed within interaction logic.

The potential role of interaction logicin interface specification, prototyping
and implementation has still to be fully investigated. The use of interaction
logic, and possible refinements of it, are part of ongoing research aimed at link­
ing the evaluation of interfaces with their formal modelling and specification.

6: Acknowledgements

This research is partly supported by a UK SERC grant (number GR/E/26945).
Thanks goes to members of the University of York, HeI Group and staff at
Sheffield City Polytechnic for their encouragement.

References

[Apt & van Emden 82]

[Boehm & Gray 84]

[Bowen 85]

[Davis 82]

[Dix & Runciman 85]

[Dix 91]

[van Emden et al 85]

[Gabbay 87]

[Gabbay 89]

109

Apt, K. R. and van Emden, M. H. "Contribu­
tions to the Theory of Logic Programming" ,
in Journal of the. Association of Comput-
ing Machinery,29(3) July 1982, pp 841-862.

Boehm, B. W. and Gray, T. E., "Prototyping
vs. Specification: Multi, A- project Experi­
ment", in Proceedings of the lEE 7th In-
ternational Conference on Software Engi-
neering, pp 473-484, 1984.

Bowen, K. A. "Meta-Level Programming and
Knowledge Representation", in New Gener-
ation Computing (3) 4 1985, pp359- 384.

Davis, R. E. "Runnable Specifications as a
Design Tool", in Logic Programming, eds.
Clark, K. L. and Tarnlund, S. A., Academic
Press, pp 141-149, 1982.

Dix, A. J. and Runciman, C. "Abstract mod­
els of interactive systems", in People and
Computers: Designing the interface, eds.
P. Johnson and Cook, S., Cambridge Univer­
sity Press, 1985, pp 13-22.

Dix, A. J. Formal Methods for Interactive
Systems, Academic Press.

van Emden, M. H., Ohki, M. and Takeuchi,
A., Spreadsheets incremental queries as a
user interface for logic programming, CS-
85-43, University of Waterloo,1985.

Gabbay, D. "Modal and Temporal Logic Pro­
gramming" ,in Temporal Logics and Their
Application, ed. Galton, A. Academic Press,
pp 197-238, 1987.

Gabbay, D. The Declarative Past and Im-
perative ~ture - Executable Temporal
Logic for Interactive Systems, Technical
Report Imperial College of Science and Tech­
nology, 1989.

110

[HareI79] Harel, D. "First-Order Dynamic Logic", in
Lecture Notes in Computer Science Vol 68,
Springer-Verlag, 1979.

[Harrison &; Dix 90] Harrison, M. D. and Dix, A. J. "A state
model of direct manipulation in Formal
Methods", in Human Computer Interac-
tion, eds. Harrison, M. D. and Thimbleby,
H. W., Cambridge University Press, pp 129-
151, 1990.

[Harrison et a189] Harrison, M. D., Roast, C. R., and Wright,
P. C. "Complementary methods for the iter­
ative design of interactive systems", in De-
signing and Using Human-Computer In-
terfaces and Knowledge Based Systems,
eds. Salvendy, G. and Smith, M.J., Elsevier
Scientific, pp 651-658, 1989.

[Hoare 85] Hoare, C. A. R. Communicating Sequential
Processes, Prentice-Hall International, 1985.

[Komorowski &; Maluszyuki 87] Komorowski, H. J. and Ma, J .luszyuki "Logic
Programming and Rapid Prototyping", in
Science of Computer Programming 9, pp
179-205, North Hoiland, 1987.

[Kowalski 84] Kowalski, R. A. "The relation between logic
programming and logic specification", in
Philosophical 1hmsactions 312, pp 345-
361,1984.

[Kowalski &; Sergot 86] Kowalski, R. A. and Sergot, M. J .. "A logic­
based calculus of events", in New Genera-
tion Computing (4) pp67-95, 1986.

[Manchanda 88] Manchanda, S., A dynamic logic program-
ming language for relational updates, TR
88-2, University of Arizona, 1988.

[McCarthy &; Hayes 69] Me, J.Carthy and Hayes, P. J., "Some philo­
sophical problems from the standpoint of ar­
tificial intelligence" in Machine Intelligence
4, Edinburgh University Press, 1969.

[Moss 81] Moss, A. C. Declarative input/output in
Prolog, Technical Report, Department of
Computing, Imperial College of Science and
Technology, 1981.

[Ohki et al 86]

[Roast &; Wright 90]

[Roast 91]

[Sergot 83]

[Shapiro 87]

[Southwick 88]

[Ueda 86]

[Ueda 87]

[Wolstenholme 90]

111

Ohki, M., Takeuchi, A. and Furukawa, K.
"Framework, A for Interactive Problem Solv­
ing based on Incremental Queries" in Logic
Programming, Lecture Notes in Computer
Science 264, Springer-Verlag, 1986.

Roast, C. R. and Wright, P. C. Incorporat-
ing the User's Perspective into a System
Model, Report YCS 148, University of York,
Department of Computer Science, October
1990.

Roast, C.R. Interaction Logic, University
of York, Department of Computer Science,
1991, in preparation.

Sergot, M. "Query the User facility of
Logic Programming" in Integrated Inter-
active Computer Systems, eds. P. Degano
and Sandewall, E., pp 27-41, North Holland,
1983.

Shapiro, E. (ed) Concurrent Prolog, MIT
Press, 1987.

Southwick, R. "Topic Explanation in Expert
Systems" , in Research and Development in
Expert Systems V, eds. Kelly, B. and Rec­
tor, A., pp 47-57, CUP, 1988.

Ueda, K. "Making Exhaustive Search Pro­
grams Deterministic" in Proceedings of the
3m International Conference on Logic
Programming, Lecture Notes in Com­
puter Science 225, Springer-Verlag, pp 270-
282,1986.

Ueda, K. "Making Exhaustive Search Pro­
grams Deterministic, Part II" , in Logic Pro-
gramming, Proceedings of the 4th Inter-
national Conference, ed. Lassez, J-L., pp
356-375, MIT Press, 1987.

Wolstenholme, D. External Data in Logic
Based Advice Systems, PhD Thesis, Impe­
rial College of Science and Technology, 1990.

Deriving Answers to Logical Queries
Via Answer Composition

Robert J. Gaizauskas
robertgOcogs.sussex. ac. uk

School of Cognitive and Computing Sciences
University of Sussex,

Falmer,
East Sussex,

England

Abstract
This paper presents definitions of query and answer both for defi­

nite clause and full first order deductive question answering systems (or
logic programming languages). It then investigates the compositional
properties of queries and answers: given a complex query, what is the
relation between the set of answers to the complex query and the sets
of answers to the components of complex query, themselves viewed as
queries. Again both the definite clause case and the full first order case
are considered and a number of results are presented. Next, an abstract
notion of answer derivation for first order queries and databases based
on the compositionality results is described. Finally some comments are
made about algorithmic issues involved in computing answer derivations.

1: Introduction

The underlying theme of the work described here is that the study of the
compositional properties of logical queries is a worthy enterprise. None of the
material concerning the definition of definite clause or first order databases is
particularly novel (which is not to say that it is not open to debate); what is
novel is the attempt to see how answers to complex queries may be viewed in
terms of answers to their components. For definite clause databases an answer
to this question is implicit in much of the work on AND-parallelism, especially
that to do with reconciliation ([Pollard 81], [Gregory 87], [Khabaza 88]). How­
ever, I am not aware of an explicit, abstract formulation of the compositionality
result as presented here (?roposition 7). For first order databases, as defined
here, the issue of compositionality is much more complex and, so far as I am
aware, has not been directly addressed at all.

113

The results of the study are quite striking. In the case of definite clause
databases and definite queries, the answer to a query may be taken to be
a substitution (of values for variables in the query). Here the answers to a
complex query are a fairly straightforward function of the answers to the query's
components. In the first order case, the answer to a query should, I suggest, be
taken to be a set of substitutions. But here there is no function which can yield
all answers to a complex query against a given database from the answers to the
. query's components against the same database alone. However, it transpires
that there are ways of constructing answers to a complex query against a given
database by combining answers to the query's components against the given
database together with answers to the query's components against databases
which are specified extensions of the given database.

The motivation for addressing the question of compositionality is threefold.
First, it is an interesting formal question in its own right. Second, an under­
standing of the compositional properties of logical queries may be of use in
extending logic programming or deductive database systems to full first order
databases and helps us to see the difficulties in this enterprise. Third, a the­
oretical understanding of the compositional properties of logical queries is of
use in designing parallel algorithms for computing answers to queries.

The work described here is theoretical and no claim is made about the
computational practicality of the results. Further work is clearly needed to
discover whether a practical implementation of the answer derivation procedure
is possible.

Proofs for the propositions presented in the paper have largely been omitted,
due to restrictions on space and the distracting effect they would have on the
overall presentation. All propositions have been proved, however, and the
proofs are presented in [Gaizauskas 91].

2: Formal Preliminaries

Familiarity with the basic concepts of mathematical logic (e.g. [Mendelson 87])
and of computational logic is assumed (e.g. [Chang & Lee 73], [Lloyd 87]).

2.1: Normal Forms

As usual we take a literal to be a positive or negative atom and a clause
to be a disjunction of literals. As is well-known [Mendelson 87], there is an

114

effective procedure for converting any set of closed formulas r in first order
logic into a set of universally closed clauses r' such that r is unsatisfiable iff r'
is unsatisfiable. In the following we employ negation nonnal fonn, a normal
form less well-known than clausal normal form (CNF).

Definition 1 (Negation Normal Form) A fonnula A is in negation nor­
mal form (NNF) if:

1. A is a literal; or,

2. A is a conjunction or disjunction of fonnulas in NNF.

The advantages of NNF are discussed in [Andrews 81]. The principal ad­
vantage is that formulas converted to NNF, excluding those containing biequiv­
alences, contain no more literals than the original. As with CNF there is an
effective procedure for converting any set of closed first order formulas r into a
set of closed formulas in NNF r' such that r is unsatisfiable iff r' is unsatisfi­
able. In fact the procedure is the same as that for CNF save that the final step
in the conversion process, that of distributing disjunction over conjunction, is
not performed.

Note that as we define them clauses and formulas in NNF contain no quanti­
fiers. Whenever such formulas occur in semantic contexts, i. e. as the arguments
to the 1= relation ('models') or when they are specified to be unsatisfiable, they
are assumed to be universally closed unless explicitly indicated to the contrary
(e.g. 3A indicates the existential closure of A).

2.2: Substitutions

We assume the standard definitions of SUbstitution, ground substitution, ap-
plication of a substitution to an expression (or instance of an expression by a
substitution), and composition of substitutions «[Lloyd 87]). We denote sub­
stitutions by lower case Greek letters, e.g. 0, 11, and sets of substitutions by
upper case Greeks, e.g. 9, E; the instance of an expression E by a substitution
o is denoted by EO; the composition of two substitutions 0 and 11 by 0 0 11.

We also assume familiarity with the notion of most general unifier for a set of
expressions.

In addition we employ some less well-known or novel notions about substi­
tutions and sets of substitutions that need defining here. In the following let
Vur(E) denote the set of variables occurring in an expression E and let BVar(9)

115

(BVar(e» denote the set of binding variables occurring in a substitution (set

of substitutions).

Definition 2 (Application) Let A be an expression, A = {A" ... ,Am}
be a set of expressions, 9 be a substitution, and e = {91, ... ,9n } be a
set of substitutions. The application of e to A, written Ae, is the set of
expressions {A91, ... ,A9n }. The application of 9 to A, written A9 is the
set of expressions {A I 9, ... ,Am9}.

Definition 3 (Restriction) Let 9 = {VJ/tl,"" vn/tn} be a substitution
and V be a set of variables. The restriction of 9 to V, written 9 I V, is
a substitution)' ~ 9 such that for every binding Vt/ti in 9, Vt/ti E)' iff
Vi E V. If e = {91, ... , 9n} is a set of substitutions then the restriction of
e to V is the set {91 I V, ... ,9n l V}.

Definition 4 (Composition) Let e = {9" ... , 9n } be a set of substitutions
and cr be a substitution. The composition of e and cr, denoted e 0 cr is the
set of substitutions {91 0 cr, ... , 9n 0 cr}.

The related notions of consistency and combination of substitutions are
suggested by [Chang & Lee 73] and by [Sickel 76] (who refers to what we call
combination as 'unifying composition') but we feel more simply defined as
follows:

Definition 5 (Consistency) Let 91 and 92 be two substitutions. 91 and 92
are consistent if there exist substitutions)'1 and)'2 such that 910)'1 = 920)'2.
The substitution cr = 91 0)'1 is called a combination of 91 and 92. cr is a
most general combination (mgc) of91 and 92 ifcr is a combination of91 and
92 and if for every combination cr' of 91 and 92 there exists a substitution
~ such that cr 0 ~ = cr'.

Example 1 Let9= {x/a,y/z} and cr = {x/w,y/b}. Putting)'1 = {z/b,w/a}
and)'2 = {z/b, w/a} we see 90)'1 = {x/a, y/b,z/b, w/a} = crO)'2. So, 9 and
cr are consistent and the substitution {x/a,y/b,z/b,w/a} is a combination of
9 and cr.

Definition 6 (J oinability) Let e and E be sets of substitutions and let
Vn = BVar(e) n BVar(E). e and E are joinable if there exist substitutions
)'1 and)'2 such that for each pair of substitutions (9, cr) E ex E

(9 I Vn) 0)'1 = (cr I Vn) 0)'2.

116

w is a join of two joinable sets of substitutions a and I:: if W is the set
containing for each pair of substitutions (9, u) E a x I:: the substitution

(9 0 'Yl) u (u 0 'Y2)

Example 2 Let a = {{win, v/x}, {w/b, v/x}} and I:: = {{vic}}. Then Vn =
{v}. Putting 'Yl = {x/c} and 'Y2 = {x/c} we see

({w/n, v/x} I Vn) 0 {x/c} = ({v/c} I Vn) 0 {x/c} = {vic, x/c}

and

({w/b, v/x} I Vn) 0 {x/c} = ({v/c} I Vn) 0 {x/c} = {vic, x/c}.

So a and I:: are joinable. And W = {{win, vic, x/c}, {w/b, vic, x/c}} is a
join of a and I::.

Finally we introduce a partial ordering relation on substitutions and on sets
of substitutions.

Definition 7 (Ordering of Substitutions) Let 9 and u be substitutions
and let A be a formula. 9 is a generalisation of u with respect to A ,
written u ~A 9, if there exists a substitution 4> such that (A9)4> = Au. Let
a and I:: be sets of substitutions. a is a generalisation of I:: with respect to
a A if there exists a substitution 4> such that (Aa)4> = AI::. a A-subsumes
I::, written I:: ~A e, if there exists a substitution a' such that

1. a is a generalisation of a' wrt A; and

2. a' ~ I::. t

Example 3 Let e = {{x/w, y/b}} and I:: = {{x/n,'y/b}, {x/c, yfb}} and let
A = P(x, y). Then I:: ~A a.

3: A Formal Theory of Queries and Answers

In this section we define the notions of database, query, and answer for definite'
clauses (these definitions are essentially those of [Lloyd 87]) and for first order
logic.

1 This ordering relation corresponds to the notion of nb!umption as defined, for instance
in [Chang & Lee 73]. Taking clauses to be sets of literals, a clause C is said to subsume
another clause D just in case there is a substitution e such that ce ~ D.

117

3.1: Databases

Definition 8 (Definite Clause Database) A definite clause is a disjunc­
tion of literals exactly one of which is positille. A definite clause database
is a finite set of definite clauses.

Definition 9 (First Order Database) A first order database is a finite set
of formulas in NNF.

Note that all definite clause databases are also first order databases. We
shall assume throughout the paper that definite clause and first order databases
are lIariable disjoint, where a set of formulas is variable disjoint if no two
formulas in the set contain occurrences of the same variable.

3.2: Queries

Since in much of the following we choose to adopt a refutation- rather than
an affirmation-oriented approach, we define the notions both of query and of
complement of a query.

Definition 10 (Definite Query) A definite query is a conjunction of one
or more positille literals (atoms). A definite query (pronounced 'refuta-
tion query ') is a disjunction of one or more negatille literals. If Q =
Ql A ... A Q11. is a definite query then the definite query -.Ql V··· V -.Q11. is
the complement of Q.

Definition 11 (First Order Query) A first order query is any formula in
NNF and a first order query is also any formula in NNF. If Q is a first
order query then the query obtained by conllerting V-.Q to NNF is the
complement of Q.

The complement of a first order query is, syntactically, also a first order
query. Here we use the notation "query" just to mark a difference in intention.
Note that all definite queries (queries) are also first order queries (queries).

118

3.3: Answers

From this point onwards, if a database fl or a query Q is not explicitly specified
to be first order or definite then either may be assumed.

Definition 12 (Definite Answer) A definite answer for a query Q against
a database fl is a substitution a such that fl 1= Qa. A definite answer for
a query Q against a database fl is a substitution a such that fl U {(Q9)y}
is unsatisfiable, where y is a substitution replacing each distinct variable
in Qa with a distinct constant not occurring in flU{Qa} (the substitution
y serves the function of skolemising 3(Qa»).

Proposition 1 Let fl be a database and Q be a query. a is a definite
answer for Q against fl iff a is a definite answer for Q against fl, where
Q is the complement of Q.

Example 4 Let fl = {-'P(x) V -,Q(x) V R(x), P(a), Q(a)} and let Q = R(v).
Then a = {via} is a definite answer for Q against fl. With Q = -,R(v), 9 is a
definite answer for Q against fl.

The principal difference between the definite clause and the first order
cases is that aside from allowing arbitrary formulas to be in the database,
or to be queries, an answer is now a set of substitutions, rather than a single
sUbstitution2 • This is necessary to accommodate disjunctive answers which
cannot occur in the definite clause case.

Definition 13 (First Order Answer) A first order answer for a query Q
(definite or first order) against a database fl (definite or first order) is a
finite set of substitutions e = {al •...• an.} such that fl 1= Qal V ... V Q9n..
We write Qal V ... V Qan. as Q vee

A first order answer for a query Q against a database fl is a finite
set of substitutions 9 = {ah ... ,an.} such that flU{(Qa l A···AQ9n.)Y}
is unsatisfiable, where y is a substitution replacing each distinct vari-
able in Qal A ... A Qan. with a distinct constant not occurring in fl U
{Qal A··· A Qan.} (y serves the function ofskolemising3(Q91 A··· A Q9n.»).
We write Q91 A ... A Q9n. as Q /:I. 9.

2Tbe idea that in full tint order logic answers must be sela of substitutions is present in
[Green 69] and [Reiter 71].

119

Proposition 2 Let l1 be a database and let Q be a query. e is a first
order answer for Q against l1 iff e is a first order answer for Q against
l1, where Q is the complement of Q.

Example 5 Here are three simple examples of queries and answers.

1. Let l1 = {-,P(x)V-,Q(x)V R(x),P(a),Q(a)} and let Q = R(v). Then
e = {{via}} is a first order answer for Q against l1.

2. Let l1 = {pea) V PCb)} and Q = P(v). Then a first order answer for Q

against l1 is e = {{via}, {v/b}}.

3. Let l1 = {R(x, a)} and Q = R(v, w) V T(v, w). Then e = {{v/x, w/a}}
is a first order answer for Q against l1.

In the first example both l1 and Q are definite and e is first order (note
that in this case the singleton member of e is a definite answer). In the second
example l1 is first order, Q is definite, and e is first order. In the final case l1

is definite and Q and e are first order.

In the following we let REF(Q, l1) denote the set of all definite answers for
a query Q against a database l1 and let REFMAx(Q, l1) denote the set of all
maximal definite answers for Q against l1 according to the ~Q ordering for
substitutions. And, we let nC:F(Q,l1) denote the set ofall first order answers
for a query Q against a database l1 and let nC:FMAX(Q,l1) denote the set of
all maximal first order answers for Q against l1 according to the ~ Q ordering
for sets of substitutions.

We have these propositions concerning answers and the ordering relations.

Proposition 3 Let l1 be a database and Q be a query. If a E REF(Q, l1)

and a' ~Q a then 9' E REF(Q, l1).

Proposition 4 Let l1 be a first order database and Q be a first order query.
If a E nC:F(Q, l1) and a' ~Q a then a' E nC:F(Q, l1).

The adequacy of the notions of answer introduced here is expressed by the
following propositions3 .

Proposition 5 Let l1 be a definite clause database and Q be a definite
query. If l1 1= 3Q then there exists a definite answer for Q against l1.

3 Of course in maIIY ways the notions of answer introduced here are inadequate. See
[Schubert 8z Watanabe 86] for a discussion of issues related to specifying what answers for
deductive question answering systems ought to be.

120

Proposition 6 Let fl. be a first order database and Q be a first order query.
If f::,. 1= 3Q then there erists a first order answer for Q against fl..

The second of these propositions follows directly from Herbrand's Theorem
(which in the current context could be stated as: if r is an unsatisfiable set
of closed formulas in NNF then there exists a finite· set r' of ground instances
of formulas in r such that r' is unsatisfiable). The first may then be shown
to follow from the second by using the completeness of resolution and noting
'various facts about resolution derivations using definite clauses.

4: Compositional Properties of Queries and
Answers

In this section we investigate possibilities for decomposing a complex query
into components such that the answers for the complex query may be expressed
as combinations of answers for components of the complex query. We carry
out this investigation both for definite clause databases and for first order
databases.

4.1: Compositional Properties of Definite Queries and
Answers

By a complez definite query we mean any definite query with more than one
literal. Any complex definite query Q may be decomposed into two definite
queries, Ql and Q2, each possibly complex themselves, such that Q = Ql VQ2.

Let fl. be a database and let Q = Ql VQ2 be a complex definite query. Our
question is: given nothing but the sets of definite answers to the components
of the complex query can we compute from them the set of answers to the
complex query? I. e., is there a binary operator * mapping pairs of sets of
substitutions onto a set of substitutions such that

REF(Q, fl.) = REF(Ql,fl.) * REF(Q2, fl.) ?

The answer is affirmative:

Proposition 7 Let fl. be a database and let Q = Ql V Q2 be a complex
definite query. Let e and E be sets of substitutions and let the function *
be given by:

e * E = {cf> I cf> is a most general combination of 9 and er where
(9,er) E ex E}

121

Then

1. REF(Q.A) = REF(Ql.A) * REF(Q2.A).

2. If a E REFMAX(Q. A) then a E REFMAX(Ql. A) * REFMAX(Q2. A).4

4.2: Compositional Properties of First Order Queries
and Answers

Bya comple:r;first order query we mean a first order query ofthe form Ql VQ2

or Q2" Q2. where Ql and Q2 may themselves be complex. Let A be a first
order database and let Q be a complex first order query. We now have two
questions: If Q has the form Ql "Q2 is there a function *c mapping pairs of
sets of first order answers onto a set of first order answers such that

And. if Q has the form Ql V Q2 is there a function *0 again mapping pairs
of sets of first order answers onto a set of first order answers such that

The answer to both of these questions is negative, as we demonstrate in
the next subsection. In the following subsection we show some partial results:
some of the answers to a complex query may be derivable from answers to
the query's components. In the final subsection of this section we show how
answers to a complex query against a given database may be obtained from
answers to the query's components against databases which are extensions of
the given database.

4.2.1: Negative Compositionality Results

Proposition 8 Let A be a first order database and Q be a first order query
of the form Ql "Q2. There does not exist a junction *c such that

'RC:F(Q. A) = 'RC:F(Ql, A) *c U:F(Q2. A)

4 Tlu conwerle oJ tAi, Jl7'OJlOIition iI JAI,e.

122

Proof Consider the case where

ill {Pea) V R(a)}

ill {PCb) V R(b)}

Q -'P(v) 1\ -,R(v).

We have

'R£F(Q,ill) = {{{via}}}
'R£F(Q, ill) = {{ {v/b}}}

'R£F(-'P(v) , ill) 'R£F(-'P(v) , ill) = 0
'R£F(-,R(v) , ill) = 'R£F(-,R(v), ill) = 0

Clearly, there can be no function *c mapping two sets of answers onto a
set of answers which meets the constraint we have set out. For the above
example shows that if there were, two distinct values in the range, {{{via}}}
and {{{v/b}}}, would have to be produced for one domain value, {0,0}. I

Proposition 9 Let il be a first order database and Q be a first order query
of the form QI V Ql. There does not exist a function *0 such that

Proof Consider the following example

ill {P(a), R(e)}

ill {P(a), R(e), Pee) V R(a)}

Q -'P(v) V -,R(v)

'R£F(Q, ill) 0

'R£F(Q,il2) = {{{v/a},{v/e}}}

'R£F(-'P(v) , ill) 'R£F(-'P(v),il2) = {{{via}}}
'R£F(-,R(v) , ill) = 'R£F(-,R(v),il2) = {{{vic}}}

For each of Q's component disjuncts the set of its answers against ill is
identical to the set of its answers against ill. Yet, the set of answers for Q
against ill differs from the set of answers for Q against il2. Hence, it is clear
that the set of answers for the complex query cannot be a function of the sets
of answers for the query's component disjuncts. I

123

4.2.2: Partial Compositionality Results

While it is not possible to derive all the answers for a complex query from the
answers to the query's components, it may be possible to derive some of the
answers this way. The following 'partial' results are easily obtained.

For conjunctive queries we have:

Proposition 10 Let ll. be a first order database and Q be a first order
query of the form Ql A Q2. Ifa E 'R.tF(Ql,ll.) or a E 'R.tF(Q2,ll.) then
a E 'R.tF(Q,ll.).

For disjunctive queries we have:

Proposition 11 Let ll. be a first order database and Q be a complex first
order query of the form Ql V Q2. Suppose a and E are answers for Ql
and Q2 against ll. respectively. If \If is a join of a and E then \If is an
answer for Ql V Q2 against ll..

Example 6

ll. = {pea, x) V PCb, x), R(cn

Q ""P(w, v) V ...,R(v)

a = {{w/a, v/x} , {w/b, v/x}}

E = {{vic}}

\If = {{w/a, v/c} , {w/b, v/c}}.

4.2.3: Extending the Database

The reason why there can be no straightforward compositionality results for
answers to first order queries may be easily seen by reference to a simple ex­
ample. Consider the database ll. = {PC a) V Q(an and the query P(x) V Q(x)
or, equivalently, the query ""P(x)A...,Q(x). A first order answer for the query is
{{x/a}} yet clearly 'R.tF(""P(x),ll.) and 'R.tF(...,Q(x),ll.) are empty. How­
ever, if we were to extend the initial database ll. with one of the compo­
nents of the query while then asking the other against this new database,
and then do the same with the role of the components reversed, we can de­
rive the answer. I.e., {{x/a}} E 'R.tF(...,P(x),ll.U {""Q(xn) and {{x/a}} E
'R.tF(...,Q(x),ll. U {...,p(xn).

124

This insight provides the basis for the definition of a notion of mutually
dependent answer pairs (the asymmetry in this definition is discussed below):

Definition 14 (Mutually Dependent Answer Pair) Let fl. be a first or-
der database and QI and Q2 be first order quenes. A mutually dependent
(md) answer pair for QI and Q2 against fl. is a pair of sets of substitutions
(9, E) such that

1. 9 E n£.r(QI,fl.U {Q2}) \ n£.r(QI,fl.); and

2. Eoy E n£.r(Q2, fl.U{(QI ~ 9)y})\n£.r(Q2, fl.), wherey is a substitu-
tion replacing all distinct variables in QI ~ e with distinct constants
not occurring in fl., QI ~ 9, or Q2.

Let MVn£.rp(QI, Q2, fl.) denote the set of all mutually dependent answer
pairs for QI and Q2 against fl..

A set of substitutions 'l1 is a mutually dependent (md) answer for QI
and Q2 against fl. if there exists a pair of sets of substitutions (e, E) E
MVn£.rp(QI, Q2, fl.) such that 'l1 = 9 U E. Let MVn£.r(QI, Q2, fl.) de-
note the set of all md answers for QI and Q2 against fl.. 5

Example 7 Let fl. = {P(x, a)VR(x, an and QI = ...,P(v, w) and Q2 = ...,R(v, w).
Then (e,E) = ({{v/x,w/a}},{{v/x,w/a}}) is an md answer pair for QI and
Q2 against fl.. For 9 E n£.r(QI, fl. U {...,R(v, wn and 9 ¢ n£.r(QI, fl.). And,
letting y = {x/c}, Eoy E n£.r(Q2, fl.U{P(c, an); i.e., {{v/x, w/a} }o{x/c} E
n£.r(...,R(v, w), fl. U {P(x, a){x/c}}) while Eo y ¢ n£.r(Q2, fl.).

Admittedly, these definitions are cumbersome. They do, however, yield the
following results.

Proposition 12 Let QI and Q2 be first order queries and let fl. be a first
order database. Let 9 and E be sets of substitutions.

1. If (e, E) E MVR£.rP(QI, Q2, fl.) then fl. U {3«QI ~ e) A (Q2 ~ E)n
is unsatisfiable.

Proposition 13 Let QI and Q2 be first order queries and let fl. be a first'
order database. Let e and E be sets of substitutions.

SNote that MV'R.E:F'P is not recursively enumerable, being the set difference of two
recursively enumerable sets. We feel the present definition is useful conceptually, but in
the next section on constructing answer derivations, we drop the requirement that in md
refutation pairs (9,1:). 9 and 1: must not belong to 'R.E:F(Q1.A) and'R.E:F(Q2,A).

125

1. If 6 U {3«Ql /.\ e) t\ (Q2 /.\ E))} is unsatisfiable and e ~ 1l£.1"(Ql. 6)
and E ~ 1l£.1"(Q2.6), then (e. E) E M'D1l£.1"P(Ql. Q2. 6).

2. If 'IT E 1l£.1"(Ql t\ Q2. 6), 'IT ~ 1l£.1"(Ql. 6) and 'IT ~ 1l£.1"(Q2. 6) then
'IT E M'D1l£:F(Ql. Q2. 6).

The following alternative definition of md answer pair is much more elegant
and is worth considering to see why Definition 14 was adopted (the definition
is '*'ed to indicate its unacceptability).

*Definition 14 Let Ql and Q2 be first order queries and let 6 be a first order
database. A mutually dependent (md) answer pair for Ql and Q2 against
6 is a pair (e. E) of sets of substitutions such that

1. e E 1l£.1"(Ql.6 U {Q2}) \ 1l£.1"(Ql.6), and

2. E E 1l£.1"(Q2. 6 U {Ql}) \ 'R.£.1"(Q2. 6).

Unfortunately the analogue of Proposition 12 does not hold for this defini­
tion. That is, if (8. E) is an md answer pair for Ql and Q2 against 6 in the
sense of *Definition 14 then it does not follow that 6 U {3(Ql /.\ e t\ Q2 /.\ E)}
is unsatisfiable. To see this consider this example:

6 {Pea) V R(b). Pee) V R(d)}

Ql = ...,P(x)

Q2 ...,R(x)

Then,

and

E = {{x/d}} E 'R.£:F(Q2. 6 U {...,P(x)}) \ 'R.£:F(Q2. 6).

However, 6 U {""P(a) t\ ...,R(d)} is satisfiable.
Before leaving the subject of md answer pairs we extend our notion of

orderings on sets of substitutions to them as well.

Definition 15 (Ordering of Pairs of Sets of Substitutions) Let (8. E)
and (6'. E') be two pairs of sets of substitutions and let A 1 and A2
be two formulas. (6.E) subsumes (e'.E') wrt Al and A2, written
(6'. E') ::5 (A 1. A2) (6, E), if there exists a substitution 4> and a pair of
sets of substitutions (e". E") such that

126

2. 9" ~ 9' j and

9. E" ~ E'.

We have the following:

Proposition 14 If (9, E) E M'D'REFP(Q" Q2, £\) and (9', E') ~(Q" 92)
{9,E} then (9',E') E M'D'REF'P(Q" Q2, £\) or 9' E 1UF(Q,,£\) or E E
1UF(Q2, £\).

4.2.4: Positive Compositionality Results

We are now in a position to state our principal results concerning the relation of
answers to a complex first order query against a given database to the answers
to the query's components against extended databases. First. the conjunctive
case.

We have:

Definition 16 (Conjunctive Answer Set) Let Q, and Q2 be queries and
let" £\ be a first order database. The conjunctive answer set of Q, and Q2
against £\, written A'R-EF (Q" Q2, £\), is the set

Proposition 1 Let £\ be a first order database and Q be a first order query
of the form Q, A Q2. Then 'R-EF(Q, £\) = A'R-EF (Q" Q2, £\).

The disjunctive case relies on the notion of ordered binary partitions of a
set. Let 9 be any set. An ordered binary partition of 9 is a pair (E, \11) such
that 9 = E U \11 and En \11 = 0. So, for example. the set of ordered binary
partitions of {{ x/a}. { x/b H is

({{x/a},{x/b}},0)

({{x/a}},{{x/b}})

({{xfb}},{{x/a}})

(0, {{x/a}. {x/bH}.

127

Definition 17 (Disjunctive Answer Set) Let Ql and Q2 be queries and
let fl. be a first order database. The disjunctive answer set of Ql and Q2

against A, written vn£:F (Ql, Q2, A), is the set of all sets of substitutions
e such that for each ordered binary partition (E, 'If) of e either

1. E E n£F(Ql,A), or

2. 'If E n£F(Q2, fl.), or

3. (E, 'If} E MVn£:Fp(Ql, Q2, fl.). 6

Proposition 15 Let A be a first order database and Q be a first order
query of the form Ql V Q2. Then n£F(Q, A) = vn£:F (Ql, Q2, A).

5: Answer Derivations

In this section we introduce the notion of an answer derivation based on the
compositionality results of the previous section.

Informally, an answer derivation is a tree whose nodes are labelled with
triples of the form (Q,A,e), where Q is a first order query, A is a first order
database, and e is a set of substitutions. The intention is that at each node,
e E n£:F(Q, fl.); however, e also carries additional information 'rolled up'
from nodes lower in the tree. In the tree the query is decomposed into its
components at successive nodes. When the literal components are reached the
branch either terminates, if a 'contradictory' literal is present in the database,
or the literal is added to the database and a copy of some other complex formula
is extracted from the database and the decomposition process begins again with
the extracted formula as a new query.

Before formally defining answer derivation trees we introduce two prelimi­
nary notions. The first is that of complementary unification of literals.

Definition 18 (Most General C-Unifier) Let Ll and L2 be literals and
let 9 be a substitution. If Ll9 = -.L29 or -.L19 = L29 then Ll and L2
are said to c-unify (for complementary unify) with c-unifier 9. 9 is a most
general c-unifier for Ll and L2 if for every c-unifier 0' for Ll and L2 there
exists a substitution y such that 90 y = 0'.

6The notion that each ordered binary partition must be an answer to a component of the
query or an md answer to the pair of components is similar to the notion in matrix theorem
proving [Bibel 87] that every path through a matrix must be unsatisfiable.

128

The second is that of of QDS trees. Intuitively a QDS tree is a tree whose
nodes are labelled with triples, each consisting of a query, a database, and a
set of substitutions.

Definition 19 (QDS Tree) A QDS tree 7' is a quadruple (T, Qu, Db, Sbs)
where

1. T is a finite, ordered tree T = (N, <), where N is a set of nodes and
< is an ifTefle:cive relation;

2. Qu is a function from nodes n E N to queries;

9. Db is a function from nodes n EN to databases;

4. Sbs is a function from nodes n EN to sets of substitutions.

If 7' = (T, Qu, Db, Sbs) is a QDS tree and n is any node occurring in 7'
then let Labelr(n) = (Qu(n), Db(n) , Sbs(n».

We now present the definition of answer derivation tree. An answer deriva­
tion tree is a QDS tree with certain restrictions holding between the labels of
related nodes. These restrictions fall into three classes depending on the form
of the query at a given node - for each query is either of the form Ql A Q2,
Ql V Q2, or is a literal.

Definition 20 (Answer Derivation Tree) An answer derivation tree (AD
tree) is a QDS tree 7' = (T, Qu, Db, Sbs) such that for any non-terminal
node n in T,

1. if Labelr(n) = (Ql A Q2, fl., 9) then either

(a) n has one child m and Labelr(m) = (Ql, fl., 9), or
(b) n has one child m and labelr(m) = (Q2, fl., 9), or
(c) n has two children ml and m2 and

i. labelr(ml) = (QJ. fl.U{Q2}, E);

ii. Labelr(m2) = {Q2, fl. U {(Ql /:.. E)y}, \II 0,),), where ')' is a
substitution replacing distinct variables in Ql /:.. E with dis-
tinct constants not occurring in fl., Ql /:.. E, or Q2;

iii. 9 = E U \II .

2. if Labelr(n) = (Ql V Q2, fl., 9) then n has k children ml, ... , mk
such that for each binary partition (E, \II) of 9 either

129

(a) there is a child'l'ni ofn with Labe1r(tnt) = (Ql. ~. E') such that
i. E I Var(Ql) ~ E' 0 ~ I Var(Ql), for some substitution ~;

and,
ii. E' 0 4» ~ e I BVar(E'); or

(b) there is a child tnt of n with Labelr(tnt) = (Q2. ~. \If') such
that

i. \If I Var(Q2) ~ \If' 0 ~ I Var(Q2), for some substitution 4»;
and,

ii. \If' 0 ~ ~ e I BVar(\If'); or
(c) there are two children tnt and m, ofn and

i. Labelr(tnt) = (Qlo ~ U {Q2}, E');

ii. Labelr(m,) = (Q2. ~ U {(Ql 1.\ E')y}. \If' oy), where y is a
substitution replacing distinct variables in Ql 1.\ E' with dis-
tinct constants not occurring in~, Ql 1.\ E', or Q2;

iii. E I Var(Ql) U \If I Var(Q2) ~ E' 0 ~ I Var(Ql) U \If' 0 ~ I
Var(Q2), for some substitution 4»; and

iv. E' 0 4» ~ e I BVar(E') and \If' 0 ~ ~ e I BVar(\If').

9. if Labe1r(n) = (Q. ~. e) and Q is a literal then either

(a) n has one child, a terminal node m, with

Labelr(m) = (Q'. ~ U {Q}. e)

where Q' is a literal in ~, Q and Q' c-unify with most general
c-unifier S, and e ~Q {S} (in this case m is called a closing
node); or,

(b) n has one child m with Labelr(m) = (Q'. ~'. e) where Q' is
a variant of a complex formula in ~ containing no variable
occurring in ~ or Q, and ~, = ~ U {Q} if no variant of Q
already occurs in ~ and ~, = ~ otherwise (in this case n is
called a choice point node).

Definition 21 (Closed AD Tree) A closed AD tree is an AD tree in which
each branch terminates in a closing node.

Example 8 Suppose ~ = {pea) V PCb) • ..,P(z) V (Q(z) " R(z»} is a first order
database and Q = ..,R(v) is a first order query. Then the tree shown in Figure 1

is an answer derivation tree demonstrating that {{v/a}.{v/b}} is a first order
answer for Q against ~.

130

We have the following 'soundness' and 'completeness' result.

Proposition 16 Let Q be a first order query, A a first order database, and
e a set of substitutions. e E 'R.E:F(Q, A) iff there exists a closed answer
derillation tree with root label (Q, A, e).

(-,R(v).l1. {{x/a. v/a}. {x/b. v/b}})

(Q(x) A R(x).l1 U {-,R(v)}. {{v/li. x/lI}})

(P(a) V P(b).l1 U {-,R(v). -,P(x)}.{{x/a}. {x/b}})

(-,R(v).l1 U {-,R(v). R(x)}. {{v/li. x/lI}})

(P(a).l1 U {-,R(v). -,P(x)}.{{x/a}}) (P(b).l1 U {-,R(v).-,P(x)}.{{x/b}})

Figure 1: AD tree for Q = ...,R(v) against l:J. = {P(a) V P(b),...,P(z) V (Q(Z) A R(z))}

131

6: Computing Answer Derivation Trees

There are many possible algorithms for computing closed AD trees, none of
which has yet been explored in detail. Given a query, a database, and a set

of substitutions e, it is relatively straightforward to construct an AD tree
to determine whether e is an answer for the query against the database. In
general, though, this is not what is desired. One is given a query and a database
and wishes to compute one or all answers to the query. In this section we
briefly examine some of the algorithmic considerations that need to be taken
into account in constructing an AD tree below an arbitrary node n.

Suppose Qu(n) = QI 1\ Q2. If we are designing a serial algorithm we must
decide which subgoal to pursue first - answers for QI, for Q2, or md answers for
QI and Q2. Making this choice is analogous to choosing a 'computation rule'
[Lloyd 87] for serial definite clause logic. In addition we must choose whether
to pursue the sub goals depth-first or breadth-first; i.e., if the subgoal neither
directly succeeds (is a literal which c-unifies with a literal in the database) nor
directly fails (is a literal posed against a database consisting entirely of literals
with none of which it c-unifies) then do we pursue it to further levels before
or after pursuing other subgoals at the same level ? Finally, in computing md
answer pairs there are issues to do with trying to avoid recomputing all of the
answers to QI and Q2 against the unextended database.

In parallel algorithms both the 'computation rule' and depth-first versus
breadth-first issues can be avoided by pursuing subgoals concurrently. While
md answer computation appears to be intrinsically serial (the second subgoal
requires knowledge of answers to the first before its database can be properly
extended) some advantage could be gained from parallelism by eagerly pursuing
'further solutions to the first subgoal while the second is computing.

Suppose Qu(n) = QI V Q2. All the comments for the conjunctive case also
pertain here. There is a further problem, however. In the conjunctive case
once an answer for a subgoal is obtained (an answer for QI or Q2 or an md
answer for QI and Q2) this answer becomes the answer for the conjunctive
node as a whole. In the disjunctive case, however, answers to subgoals must
be combined to get the answer for the node. While feeding solutions from one
subgoal into another and checking this instantiated subgoal (as in Prolog) may
produce some answers, as indicated by the 'partial' results of section 4.2.2, it
by no means guarantees an answer. One crude approach is the following. Move

l32

in strict rotation between the subgoals. Maintain three sets Rl, R2 and R3 to
which answers for Ql, Q2 and md answers for Ql and Q2 are added as they
are derived. In addition maintain a set l' which is the union of all the answers
found to subgoals so far. Each time a new answer to a subgoal is found it is
added to Rl or R2 or R3 as appropriate and its substitutions are added to 1'.
Then each subset e of l' is checked to see whether every binary partition (E, lJI)
of e meets one of the conditions in the definition of AD tree, by checking it
,against Rl, R2 and R3. If it does then e is an answer for the node. Clearly this
is massively exponential.

In a parallel algorithm answers for each subgoal could be pursued in parallel.
In addition the checking of each subset e of l' and of each binary partition of
e could be done in parallel. In serial algorithms much cleverness needs to be
exercised to avoid duplication of effort in this checking process.

Suppose Qu(n) is a literal. Here one is confronted with a choice analogous
to choosing a 'search rule' [Lloyd 87] for serial definite clause logic. If Qu(n)
c-unifies with more than one literal in 1:1 then one must be chosen. If Qu(n)
does not c-unify with any literal in 1:1 then a new formula to expand must
be chosen from 1:1. In general one should first expand formulas that contain
literals that c-unify with Qu(n). However, if 1:1 is inconsistent expanding only
such formulas does not guarantee a solution. Parallel algorithms would allow
multiple formulas to be expanded simultaneously.

In closing it is worth noting that various incomplete or limited systems
could be devised on the basis of the theoretical results developed in previous
sections. One might choose to ignore mutually dependent answers completely,
computing effectively only the answers guaranteed by the 'partial' results of
section 4.2.2 (this would produce a system more general than definite clause
logic but more restricted than first order logic); or; one might restrict the
'disjunctiveness' of answers, computing only those below a certain size.

7: Acknowledgements

The author would like to thank Dr. Y. Suzuki for helpful comments on ideas
in this paper.

References

[Andrews 81]

[BibeI87]

[Chang &: Lee 73]

[Gaizauskas 91]

[Green 69]

[Gregory 87]

[Khabaza 88]

[Lloyd 87]

[Mendelson 87]

[pollard 81]

[Reiter 77J

[Robinson 65]

133

Andrews, P.B., "Theorem Proving via General
Matings", Journal of the ACM, Vol. 28, No.2,
193-214, 1981.

Bibel, W., Automated Theorem Proving (2nd
Ed.), Viewig, Braunschweig, 1987.

Chang, C.L. and Lee, R.C.T., Symbolic Logic
and Mechanical Theorem Proving, Academic
Press, New York, 1973.

Gaizauskas, R, Deriving Answers to Logi-
cal Queries Via Answer Composition, Cogni­
tive Science Research Paper, University of Sussex,
forthcoming.

Green, C., "Theorem Proving by Resolution as a
Basis for Question-Answering Systems", Machine
Intelligence 4, (Meltzer, B. and Michie, D., eds.),
183-205, Edinburgh Univeristy Press, Edinburgh,
1969.

Gregory, S., Parallel Logic Programming in
PARLOG, Addison-Wesley, Wokingham, 1987.

Khabaza, T., Towards AND/OR Parallel Logic
Programming, DPhil Thesis, University of Sus­
&eX,1988.

Lloyd, J.W., Foundations of Logic Program-
ming (2nd Ed.), Springer-Verlag, Berlin, 1987.

Mendelson, E., Introduction to Mathematical
Logic (3rd Ed.), Wadsworth &: Brooks, Mon­
terey, 1987.

Pollard, G.H., Parallel Ezecution of Horn
Clause Programs, Ph.D. Thesis, Department of
Computing, Imperial College, 1981.

Reiter, R "On Closed World Databases", in Logic
and Databases (Gallaire, H. and Minker, J., eds.),
Plenum Press, New York, 1977.

Robinson, J.A., "A Machine-Oriented Logic
Based on the Resolution Principle", Journal of
the ACM, Vol 12, No. I, 1965.

134

[Schubert &; Watanabe 86] Schubert, L.K. and Watanabe, L., "What's in
an Answer: A Theoretical Perspective on Deduc­
tive Question Answering", in Proceedings of the
Sixth Canadian Conference on AI, 71-77, Mon­
treal, 1986.

[Sickel 76] Sickel, S., "A Search Technique for Clause In­
terconnectivity Graphs", IEEE 7ransactions on
Computers, Vol. C-25, No.8, 1976.

Using Algebraic Semantics for
Proving Prolog Termination and

Transformation
Brian J. Rossi

bjrOcsr. umc. ca

Department of Artificial Intelligence,
University of Edinburgh,

80 South Bridge,
Edinburgh EHl IHN

Scotland

Abstract

This paper reviews a technique for analysing sequential Prolog pro­
grams. An algebraic semantics of Prolog with cut is given. The se­
mantics is based on a process interpretation of logic program compu­
tation, and is written in Milner's Calculus of Communicating Systems
(CCS) [Milner 89]. This semantics uses a simpler domain than meta­
interpretive and denotational semantics, that being streams of answer
substitutions, which makes it more suitable as a programming calculi for
proving program properties. Two algebraic operators, " ; " and "[>",
define the main control characteristics in Prolog, namely clause sequenc­
ing and goal backtracking respectively. Other operators, "1>1 t", "1>1",
and " ;' ", model the cut. The semantics has been shown to be correct
and complete. Some applications of the semantics are given. Program
termination is well-suited for the semantics, as termination properties
such as infinite answer generation and looping are easily represented. In
addition, source-to-lOurce Prolog transformations which use the cut can
be verified. Process algebras are a unifying formalism for the sequential
and concurrent logic programming paradigms.

1: Introduction

The operational semantics of logic programming languages characterise com­
putation algorithmically. There are a wide variety of styles of such operational
semantics, including proof-theoretic, procedural, meta-interpretive, and deno­
tational approaches. Operational descriptions of the inference scheme are re­
quired when the behavior of particular programs is to be analysed. Much atten-

1 The author may now be contacted at: Computer Science Department, University of
Victoria, Victoria, B.C., Canada V8W 3P6

136

tion has been devoted to proving properties of the Prolog programsl . Because
Prolog's depth-first search rule and left-to-right computation rule is unfair, con­
ventional treatments of declarative and operational semantics of Prolog have
proved inadequate for proving program properties. For example, denotational
semantics are descriptively powerful enough to describe most Prolog features.
However, its complex domain spaces limits its usability in program verification
applications. Meta-interpretive semantics describe basic operational properties
of Prolog. Their treatment of programs as abstract data, however, limits their
use as programming calculi.

This paper reviews research in [Ross 91] (see also [Ross & Smaill91, Ross
& Wilk 90D. The algebraic semantics is modelled on the process interpretation
of logic languages, and the paradigm adopted is Milner's Calculus of Commu­
nicating Systems (CCS) [Milner 89]. Algebraic process models have been pri­
marily used to model concurrency, an example of which is [Beckman et al 86]
where CCS models concurrent logic program computation. Algebraic process
semantics like CCS contain the necessary concepts with which sequential logic
program computations can be fully axiomatised.

The semantics has been successfully applied towards proving termination
and transformation properties of Prolog programs. Termination proofs are
ideally suited for the semantics, as the stream domain of CCS readily allows
the representation of finite, infinite, and looping logic program computations.
Some types of program transformations which use cuts are also easily validated
using CCS streams, since an activated cut discards answer substitution streams
when it prunes computation subtrees.

Section 2 introduces the CCS semantics of Prolog. Some properties such
as correctness and completeness are discussed in Section 3. Example termina­
tion and transformation proofs using the semantics are given in Section 4. A
discussion concludes the paper in Section 5.

This paper assumes a basic knowledge of CCS for full understanding of the
semantics. Appendix A gives an overview of basic CCS. See [Milner 89] for a
thorough introduction.

2: CCS Semantics of Prolog

AND/OR trees represent logical dependencies in logical inferences and com­
putations. Logic programs have a natural AND/OR tree interpretation [Lind-

1 Henceforth, "Prolog" refers to sequential Prolog as described in [Clocbin It Mellish 81].

137

strom & Panangaden 84]. An AND node represents the requirement to solve a
goal of a clause body or query, and an OR node represents the requirement to
solve a single clause. The "AND" and "OR" labels refer to the logical contribu­
tion of the nodes: at least one OR node must be successfully resolved (logical
OR), while all brethren AND nodes must be resolved (logical AND).

A process or agent is a mechanism whose behavior is characterised by
discrete actions [Milner 89]. Process algebras describe the behavior of net­
works of processes. They can be used to model concurrent logic languages,
as the modular nature of logic programs is well suited to process models.
Our AND/OR process model is similar to ones in [Conery & Kibler 85] and
[Lindstrom & Panangaden 84]. An AND/OR tree defines the declarative se-
mantics of a logic program. Each AND and OR node in the tree is then
modelled as a CCS agent.2 Doing so introduces an operational semantics to
the AND/OR tree: the AND and OR processes determine the manner in which
the tree is explored. The contribution of this paper is that we define sequential
AND and OR agents, rather than concurrent agents as in most other process
interpretations.

2.1: Sequential Prolog control

The semantics of Prolog control is in Figure 1. A function M [] converts
Prolog program constructs to their CCS equivalents. Three types of equality are
used in the figure. Syntactic equivalence is denoted ";:". Semantic equivalence
is denoted "=", and is used for defining the translation function "M []" .
Lastly, CCS constant definitions, which define agents, are defined using .. ~f".

The domain of the semantics is the Herbrand universe. The CCS theory
used is supplemented to handle this domain, and reduces to Milner's basic
calculus. Terms over the Herbrand universe are found within CCS expressions
as either arguments in CCS agent calls, or computed answers within CCS
actions (discussed shortly). Data1low - the application of binding substitutions
to goals, and the returning of computed results - occurs "as expected"; details of
the mechanics of data1low within CCS are in [Ross 91] and [Ross & Smai1191].

The two events affecting control are success and termination, which are'
represented by the actions succ and done respectively. The primary means of
observing computations is via the succ action. The full form of this action is
succ(9), where 9 is an answer substitution of the form {Xi -- ttl. However,

2Note that AND and OR nodes are modelled. as OR and AND agent. respectively.

138

The following definitions are used throughout:

[f] = [suet' / suec, done' / done]
F = {suet', done' }
def

Done =
T def
rue =

done.O
suec(£). Done

(i) Predicates (OR agents)

M[[Ph P2,· .. , P,J] = P ~f Pl; P2; ... ; Pk

(li) Clauses (AND agents)

M[Pl : - Gl,' . " Gn..) = Pl ~f M[Gl) I> M[G2) I> •.. I> M[Gn.)

(iii) Program queries

M[: - Gl,' ", Gn..) = M[Gl] I> M[G2] [> ... I> M[Gn.]

(iv) Sequencing operator

P; Q ~f (P[b/done] I b.Q) \ b

(v) Goal backtracking operator

P I> Q ~f (P[f] I NextGoa4) \ F
NextGoa4 ~f suet'.(Q; NextGoa4) + done'. Done

(vi) Single goal calls

M[G] 4: ~.Done+ Done : G is a builtin atom
d f { G : G is a defined 'Predicate

Done : G not defined

Figure 1: CCS semantics of Prolog control

succ and suec(S) will be used interchangeably. A successful finite computation
takes the form of a stream of succ actions,

~.~.···.~.Done (k ~ 1)

139

Finite failure is represented by termination with no success actions. Unless a
logic program is non-terminating, done will eventually be communicated, even
after successful answer substitutions are computed. Empty answer substitu­
tions are represented by £.

Unification is treated as an explicit call to a builtin unifier agent. For
example, the clause

P(I.b(Y» :- a(I) •...

is conceptually equivalent to

P(A.B) :- (A.B)=(I.b(Y». a(I) •...

where "=" is a builtin unifier. The corresponding CCS transformation is then

peA, B) ~f (A, B) = (X, b(Y» t> a(X) t> ...

The definition of unification itself is:

- - def --.,.., tl = t2 = succ(9).Done + Done

where 9 is the most general unifier of t1 and t2. This = agent returns either
succ(9).Done or Done, depending upon the unifiability of t1 and t2.

Prolog's search rule uses the simple strategy of searching clauses according
to their textual order in the program. This search strategy is modelled in (i)
by the OR agent linearly sequencing the invocation of clauses. The OR agent
invokes each child AND agent in succession. The sequencing operator in (iv)
waits for the first agent to terminate, upon when the next agent is invoked. It
hides all communications needed to perform this sequencing using restriction.

Prolog's computation rule resolves goals using their textualleft-to-right or­
der in a clause body (ii) or query (iii). The AND agent does this by repeatedly
resolving the goals in a query or clause body using their left-to-right ordering.
The "t>" operator in (v) models the left-to-right backtracking behavior of goals.
In A t> B, agent A is invoked, and if successful, B is then invoked. Upon B's
termination, checked through use of agent sequencing, the NextGoa'Lt loop is
re-executed to proce88 the next solution of A. This continues until A termi­
nates. NextGoa'Lt should more precisely be written as a function NextGoa1(A)
over the agent A. Instead, for notational simplicity, a separate NextGoa'Lt loop
is defined for each backtracked pair of expressions in the program, and the i
index uniquely labels this looping agent. Note how "[fl" relabels actions so

140

p(X) :- a(X). b.
p(X) : - p(X).

a(l).
a(2) : - a(2).

b.

V(X) ~f VI (X) ; 1'2 (X)
VI (X) ~f o(X) I> b
V2(X) ~f V(X)

o(X) ~f 01 (X) ; 02(X)
OI(X) ~f X = 1
02(X) ~f X = 2 I> 0(2)

Figure 2: Logic program and ees translation

that they are subscripted, while "\ F" restricts these relabelled actions. This
localises the actions within the operator. An example ees translation is shown

in Figure 2.

2.2: Higher Level Semantics

The transitional semantics of ees in Figure 7 of the appendix can be applied
to a ees translation of a Prolog program simulate Prolog's computational
behavior. For many applications, this is too low-level to be of practical use. A
bisimilarity in ees is an observable behavioral equivalence. The bisimilarities
of Figure 3 define the behavior of the control operators at a higher-level, and
represent various states of the sequencing and backtracking mechanisms. The
rule Seq sequences agents so that the previous agent first issues done before
the next agent proceeds. The Back rules apply to backtracked goals. A new
operator is used to represent intermediate states of backtracking:

P~Q ~f (P[f] I (Q; NextGoolt» \ F

where NextGoolt is as with 1>. ~ is actually indexed with the i used by
NextGoolt, but for simplicity is made implicit. The expression A~ B repre­
sents the state of the backtracking mechanism between agents A and B when
the computation of B is being pedormed. Each Back rule is derived using the
expansion theorem along with the definitions of I> and ~.

141

Seq: Done;P ~ P

Back-l : (~.P)t> Q ~ Pe>Q

Back-2 : Done t> Q ~ Done

Back-3 : Pe>~.Q ~ ~.(Pe>Q)

Back-4 : Pe>Done ~ Pt>Q

Figure 3: Bisimilarities for symbolic computation

Another useful bisimilarity is the Re801 rule of Figure 4. This rule defines
the behavior of a single resolution step by applying a unifying substitution onto

the body of a clause if a goal and clause unify.

Resot:

1 (i) Done : i and i l do not unify

PI(i) ~ (~~~ succ(9).Done: 9 = mgu(~, ~I)' and PI(X) 44:f (x = il)

(\'L\.) Q9 : 9 = mgu(t, ttl, and PI(X) 44:f (x = il) t> Q

Figure 4: Resolution rule

2.3: The Cut

Two events happen when a cut is activated.

(i) The choice points of the goals found prior to the cut in the clause are
discarded.

(ii) The clauses following the clause with the cut are not searched. The
CCS representation of these events is done by suspending agents. This
is performed in CCS by simply not communicating to the agents which
are to be suspended, in other words, forcing deadlock. In the expression

142

b.P R:l 0, in the absence of any agent communicating b, the expression
b.P deadlocks, and is equivalent to a null agent.

A!>IB ~f (A[fJ I (succ/.B + done'. Done» \ F

A !>ItB def (A[fJ I (succ/.B + done/.Done[t/done])) \ F

P ; Q def (P I t.Q) \ t

Figure 5: Operator definitions for cut

Figure 5 defines operators which model the cut. The operators "!>I" and
"!>It" correspond syntactically to cuts within a clause: !>It represents the first
cut in a clause, and !>I is used for remaining cuts. In the definition of !>I,
only the first solution is obtained from A, after which B is invoked and A is
ignored. This differs from I> where successive solutions from A are retrieved
via the NextGoa4 loop. !>It indicates that there are two possible termination
signals, t when the cut has not been activated, and done when the cut has
been activated. The operator " ; " is used to sequence a clause with a cut with
the clause following it. The ; operator is almost identical to ; (see Figure
1), the difference being that; does not relabel the termination signal done
from P. Instead, this relabelling is done elsewhere within the clause by !>It.
An example translation is in Figure 6. The following bisimilarities describe the
operational effects of a cut:

Cut - 1: (~.A !>ItB) ; C R:l B
Cut - 2: (done.A!>ItB); C R:l C

Using cut, Prolog's negation by failure can be modelled:
def 0

Not P = (P !>ItDone) ; True

3: Properties of the semantics

There is a correspondence between SLD-resolution and behavior of the ees
semantics. The soundness of the semantics follows from the soundness of SLD­
resolution. The semantics is relatively complete with respect to Prolog in that
it models both Prolog's computation and search rules.

q(l) :- r(a),!,r(b),!,r(c).
q(b).
q(c) :- !.
q(d).

Figure 6: Logic program with cut and CCS translation

The control operators have some algebraic properties. For example:

(P; Q); R ~ P; (Q; R) : associativity of ;
(A t> B) t> C ~ A t> (B t> C) : associativity of t>
(A; B) t> 0 ~ (A t> 0) ; (B t> 0) : Tigh.t - distrlbutivity

143

o t> (A ; B) rp (0 t> A) ; (0 t> B) : non - left - distrlbutivity

Additional compositional properties of the semantics are shown in [Ross 91].
-.5

4: Applications

The CCS semantics has been successully applied towards proving Prolog pro­
gram termination [Ross It Smai1l91] and validating program transformations
[Ross It Wilk 90]. First, some semantic issues of Prolog program termination
are given, along with an example termination analysis. Then some source-to­
source Prolog transformations are validated.

4.1: Program termination

Termination of a computation is not an observable phenomena, since termi­
nation can be thought of as a permanent lack of observable activity. What is
required is a means for establishing when an agent terminates - a termination
convention. Both OR and AND agents are defined to be well-terminating,
which means that the action done is always generated by an agent before and
only before it terminates.

There are three basic behaviors of AND and OR .agents:

144

(i) Finite computations. A finite computation is represented as a finite
sequence of zero or more answer substitutions:

SUCC(91) succ(9k) . Done (k ~ 0)

This is denoted as succ(9t)~=1.Done or just succ(9t) k.Done when k > 0,
or Done when k = 0;

(ii) Infinite productive computations. This occurs when a non-terminating

agent generates an infinite stream of answer substitutions:

succ(9J) SUCC(9k)' ...

It is denoted SUCC(9i)t:l or just succ(9t) w;

(iii) Looping computations. We denote looping by "..1.", and define it in ees
as:

..1. ~f ..1.

A looping agent is in a state where it produces no actions whatsoever:

..,31X: 5 ~ 5'

Looping is also known as live lock. For any looping agent P, we have

P ~ ..1..

The next two theorems show the behavior of clause sequencing and goal
backtracking with respect to different combinations of finite and infinite answer
substitution streams.

Theorem 1 Let IX and 13 represent answer substitutions, and let A and B
generate the following combinations of sequences:

(i) A~ IXl.Done
(ii) A~ IX w

(iii) A~ IXl.Done

and
and
and

B ~ f3k.Done (; ~ 0, k ~ 0)
B ~ (anything)
B ~ 13 W (} ~ 0)

Then A ; B generates the following for the above cases:

{
(i) IXl. 13k. Done

A; B ~ (ii) IX W

(iii) al .f3w
o

145

Theorem 2 Let« and ~ represent answer substitution results, and let e
be an answer substitution which includes the one computed by A.

(i) Let A ~ «1\.Done (n> 0). Then

{
~k.Done : if Be ~ ~".Done for every e,

A I> B ~ h + b + ... + h = k (1 ~ n)
~ W : if Be ~ ~w for any e

(ii) Let A ~ «w. Then A I> B ~ ~ W or A I> B ~ ~i.J. (i ~ 0) 0

The next three theorems describe looping. Theorem 3 shows how loop­
ing behavior can be expanded out of agent expressions. Theorem 4 shows
how looping inhibits agent sequencing. Theorem 5 shows how looping inhibits
backtracking. Recall that the "B:l' operator represents the state of backtracking
when the right-hand-side is processing.

Theorem 3 If P generates a looping derivative, P ~ 1., then P ~ s.J.
holds. 0

Theorem 4 o

Theorem 5

o

Consider the looping program in Figure 2 of Section 2.1. We first show the
behavior of the call a(X).

a(X) ~ al (X); a2(X)
~ suec({X - 1}) . a2(X)
~ suec({X - 1}). a(2)
~ succ({X - 1}). 1.

: defn a
: Reso1 aI, Seq
: Resot a2
: a(2) ~ 1.

One solution is generated, and then the computation loops.
Next, given the query 1- p(X)., the program in Figure 2 will generate one

solution and then loop:

p(X) ~ (a(X) I> b); P2(X) : defn P,PI
~ «suec(el) .1.) I> b) ;P2(X) : (from above) el = {X -1}
~ ... ~ suec(el) . (1. I> b) ; P2(X) : expansion
~ suec(el) . (1. ;P2(X» : theorem 5
~ suec(el) . 1. : theorem 4

The query p(X) therefore infers {X - 1}, and then loops.

146

4.2: Program transformation

The transformation verified here uses the cut. Cuts are usually used to increase
computational efficiency by pruning unwanted computation subtrees. Both
examples given here assume terminating program components. However, non­
termination is handled using the techniques of the previous section.

A goal is determinate if it computes at most one solution. Likewise, clauses,
predicates, and programs can similarly be determinate. A CCS agent P is
determinate if

P ~ ~.Done + Done

If a and b are determinate, then so is a I> b.
The notation PO is used to denote the invocation of P with the most recently

computed binding environment applied to it.

4.2.1: Distributing cuts through clauses

The following is a good example of how Prolog control is represented alge­
braically using the CCS semantics. The following unfolding transformation is
valid:

Pi : - A, B, !, C.
Al : - HI.
A2: - H2.

Pf: - HI, B,!, C.
Pf+1 : - H2, B,!, C.

where Pf+1 is a new clause, and A, B, C, Hi represent lists of goals without cuts.
Note that the unification of A with Al or A2 is treated as an explicit call to
the unification algorithm, and is thus a goal in Hi.

Proof: The CCS representation of this transformation is

(A I> B) [>jC ~ «HI I> B) [>jtC) ; «H2 I> B) [>jC)

The LHS can be rewritten:

(A I> B) [>jC ~ «HI; H2) I> B) [>jC : Con A
~ «HI I> B) ; (H2 I> B» [>jC : right - distributivity

The transformation is therefore

«HI I> B) ; (H2 I> B» [>jC ~ «HI I> B) DlrC) ; «H2 I> B) Dlc)

or more concisely,

147

The behavior of X is X ~ Done + ~.X'. The bisimilarity is proven for
each of these two possible behaviors of X.

(i) Let X ~ Done.

LHS : (X ; Y) !>IC ~ (Done; Y) !>IC
~ Y!>IC

RHS: (X !>I,C) ; (Y!>IC) ~ (Done !>I,C) ; (Y!>IC)
~ Done[t/done]; (Y!>IC)
~ Y!>IC

(ii) Let X ~ ~.X'.

LHS: (X; Y)!>IC ~ (~.X' ; Y) !>IC
~ CO

RH5: (X !>I,C) ; (Y!>IC) ~ (~.X' !>I,C) ; (Y!>IC)
~ CO

: subst. X
: Seq

: subst. X
: expansion
: expansion

: subst. X
: Cut

: subst. X
: Cut

Note that the activation of the cut in both expressions yields the same
computational result. 0

4.2.2: Inserting cuts in clauses

The following transformation from [Sawamura It Takeshima 85] is valid,

PI : - 51. PI : - 51.

Pt : - St.I, 5t,2' => Pt: - 5t,1. !, 5t,2.

where Sk represents a list of goals gl, ... , g1\ (n ~ 0), and one of the following
conditions hold: (i) If no cut is in St,l, then Pt is the last clause, and all goals
in Si,l are determinate. (ii) H there are cuts in 5i.I, then every goal right of
the rightmost cut is determinate.
Proof: We will look at condition 1. The CCS representation for this trans­
formation is:

def 5 PI = I.

def 5 5 Pi = i,l I> i,2
=>

Because its components are determinate, 5t,I can be treated as a determi­
nate agent. We therefore need to show

5t,I I> 5t,2 ~ 5t,I !>I5{,2

148

(i) If 5t,1 ~ Done, expanding both the expressions results in Done.

(ii) Let 5t,1 ~ ~.Done, and 5t,2 a ~ s.Done.

5t,1 I> 5t,2 ~ ~.Done I> 5t,2 : subst. 5t,1
~ Donell>5t,2 a : Back-2
~ s.(Done I> 5t,2) : Back - 4 Tepeated,
~ s.Done : Back-3

5t,1 t:>I5i,2 ~ ~.Done t:>I5t,2 : subst. 5t,1
~ 5t,2 a : Cut
~ s.Done : subst. 5t,2 a

0

5: Discussion and related work

The contribution of this research is:

• We have defined an algebraic process model of Prolog with cut. The
operational semantics of Prolog control is defined at the language level,
rather than at a meta-program or abstract denotationallevel.

• Termination proofs make use of well-founded orderings, and, ideally,
structural induction over the composition of data arguments, or over the
size of streams of answer substitutions. It also does not require complex
variant functions as in [Francez et al 85], and it differs from the multiset
partial orderings in [Apt & Bezem 90].

• Source-to-source program transformation can be formally validated with
the semantics, without the use of overly complex domain spaces as in
[Debray & Mishra 88].

• Work in [Ross 91] presents CCS semantics for other sequential control
schemes, such as different breadth-first schemes and predicate freezing.
The operators from these different semantics can be intercomposed to­
gether to model new control schemes. For example, in

(A 1>+ B) I> (C 1>+ D)

two expressions using a breadth-first computation rule operator 1>+ are
joined together using standard left-to-right backtracking.

149

• Process algebras are a unifying formalism for the operational semantics
of different logic programming paradigms, such as sequential, coroutined,
and concurrent logic programming languages. The subset of CCS we use
allows the stream-based nature of sequential logic program computation
trees to be described. Instead of sequential backtracking,

unconstrained concurrent execution of goals is represented in CCS as:

AI I A2 I ... I Ak

Of course, more sophisticated control of concurrency requires introducing
additional mechanisms within this expression. One CCS treatment of
concurrent Prolog computations is in [Beckman et aI86].

One particular process model of Prolog control was presented, and it admit­
tedly may not be the simplest or most lucid design possible. CCS was chosen
because it is a well-accepted, solidly founded formalism. Other algebraic mod­
els such as CSP [Hoare 85] might also prove suitable. The CCS semantics
for concurrent Prolog in [Beckman et al 86] is more concise than our sequen­
tial semantics. This is to be expected, as sequential Prolog must deal with
backtracking and the consequent unbinding of logical variables. The fact that
CCS can represent both sequential and concurrent logic program computation
highlights its power as a semantic formalism.

The work most closely related to ours is that of Baudinet [Baudinet 88]. She
proves termination properties of Prolog programs using a functional semantics
of the language. Like her, we represent computation at the syntactic level
of the program, use a streams of answer substitutions domain, and our "~"
and II ; " operators are similar to her "~" and "u" functions which describe
the results of program backtracking and sequencing. Our approach differs
fundamentally from hers in that we represent the operational semantics of
Prolog directly, whereas she defines the final results of executing a logic program
assuming Prolog's search and computation rules. Our approach should prove
advantageous when the semantics of other logic program computation strategies
are to be derived.

Denotational semantics have been derived for Prolog with cut - e.g. [Jones
& Mycroft 84, Debray &. Mishra 88]. Although denotational semantics are
powerful enough for axiomatising many features of Prolog under one formal­
ism, it is not the most lucid or intuitive semantics possible in the context of

150

proving program properties [Ashcroft &: Wadge 82]. The functional semantics

used for proving program transformations in [Debray &: Mishra 88] seems to

be a complex formalism for proving simple properties of Prolog programs, as

it requires fixpoint proofs to show behavioral equivalences between program

components. On the other hand, we prove behavioral equivalences by simple
induction proofs over computation streams.

6: Acknowledgements

Special thanks to Chris Tofts for his invaluable assistance with CCS. Thanks

also to Harvey Abramson, Alan Smaill, Colin Stirling, and Paul Wilko Sup­

port through a University of Edinburgh Postgraduate Studentship and an ORS

award is gratefully acknowledged.

151

Appendix

A: CCS definitions

Act Sumj
Ej ~ Ej

(j E I)
c:l.E ~ E LiEI Ei ~ Ej

Coml
E~E'

Com2
F~F'

ElF ~ E'IF ElF ~ ElF'

Com3 E~E' F..!. F'
ElF ~ E'IF'

E~ E' E~E'
Res

E\L ~ E'\L
(~,a:¢L) Ret

E[f] fi!) E' [f]

Con
P~ P' (A ~f P)
A~P'

Figure 7: Transitional semantics of basic CCS calculus

CCS is an algebra which allows the description and analysis of the behavior
of agents. An agent or process is a mechanism whose behavior is characterised
by discrete actions. Agents are described using a set of agent expressions, £.
Letting E range over £, then £ are the formulae recursively constructed using
the following equations:

c:l.E

LiEI Ei
El I E2
E\L
E[f]

Prefix
Summation
Composition
Restriction
Relabelling

Milner defines the semantics of these equational operators using the transitional
rules of Figure 7. These transitions are sequents in which the expression below

152

the line can be inferred when the expressions above the line (if any) hold. The
expression E ~ E' represents the transition of agent E into agent E' through
the action ct. When multiple transitions occur, as in E ~ ... ~, then ctl ... ~
an action sequence of E, and E' is a deri1Jati1Je of E. The meaning of the
transitions in Figure 7 are:

1. Act: This describes an agent transition in terms of its immediate actions
ct. The symbol ce." is separates actions within a stream . .A is a set of
action names, and A is the set of co-names. By convention, names are
used for input actions, and co-names for output actions. The set of labels
(, is (, = .A U A. The set of actions Act is Act = (, U {'t'}, where 't' is a
distinguished silent action3 .

2. Sum,: The expression EI + Ez means that behaviors El and Ez are alter­
native choices of behavior.

3. Comt: Agent composition represents how agents behave, both autono­
mously (Com!, Comz) and interactively (Com3).

4. Res: Restriction removes the specified actions in set L from being ob­
served externally.

5. ReI: A relabelling /unction f : (, - (, renames actions. A notation
for finite relabelling functions is [al/bl, ... ,aldblt] where each bt is
renamed by at.

6. Con: A constant is an agent whose meaning is defined by an agent
expression. For every constant A, there exists an equation "A ~f E". The
definition of an agent constant is semantically equivalent to the constant
reference itself. The null or inactive agent is denoted O.

The ees rules extensively used in this paper are Act and Con.
The most basic activity within a network of ees agents is a handshake,

which is a successful simultaneous communication between two agents. In order
for a handshake to occur, two agents must simultaneously execute identical
immediate actions, one of which is a co-action of the other. For example, in
the expression

(a.P+ b.Q) I (a.R+c.S)

a communication can occur between the terms a. P and a. R, and results in the
occurrence of a hidden "'t'" action. A common form for ees expressions is

3H 't' n is not used in this paper.

153

(PI I ... I Pn) \ L The expansion law converts such an expression into
one having a summation of terms with all immediate actions prefixed onto
corresponding agent states. The (simplified) expansion law is as follows. Let

P = (PI I ... I Pn) \ L with n ~ 1. Then

P = L {(X.(PII ... IP{I ... IPn)\L : Pi ~ P{, ct ~ L U Ln
+ L {,r.(PII ... IPH···IPjl ... IPn)\L : Pi ~ P{, Pj! Pj, i < n

The first summation represents the agents which autonomously change state.
The second summation represents the agents which change state interactively
with one another (via hidden "[' actions), which happens when a f3 and jj hand­
shake.

A significant part of ees theory is devoted to various concepts of behavioral
equality. A bisimilarity is an observed equivalence amongst agents. We find
observation equivalence to be the most practical bisimulation to use. Let A :!
A' represent the transition of A into A' where the action sequence eX is one
where all hidden "'t" actions are removed. Then P ~ Q iff, for all ct E Act,

(i) Whenever P ~ pI, then for some Q/, Q :! Q/, and pI ~ Q/.
(ii) Whenever Q ~ Q/, then for some pI, P:! pI, and pI ~ Q/.

This states that agents with identical external behavior can be considered equal,
and that their equational descriptions are substitutive with each other within
ees expressions4 . To prove bisimilarity of two expressions, it must be shown
that the ct-derivatives of the expressions generate the same behaviors, for all
possible ct.

4This does not hold in general with observational equivalence, but can be considered to
be so in our constrained use of CCS.

154

References

[Apt ok Bezem 90] Apt, K. R. and Bezem. M. "Acyclic Pro­
grams", in 7th International Conference on
Logic Programming, Jerusalem, Israel, 1990.

[Ashcroft ok Wadge 82] Ashcroft, E. A. and Wadge, W. W. "R for Se­
mantics", ACM 7hmsactions on Program-
ming Languages and Systems, 4(2):283-294,
April 1982.

[Baudinet 88] Baudinet, M. Proving Tennination Proper-
ties of Prolog Programs: A Semantic Ap-
proach, Technical report, Computer Science
Department, Stanford U., March 1988.

[Beckman et a186] Beckman, L., Gustav880n, R. and Waern, A.
"An algebraic model of parallel execution of
logic programs", in Logic in Computer Sci-
ence, Cambridge, Mass., 1986.

[Conery ok Kibler 85] Conery, J. S. and Kibler, D. F. "AND
Parallelism and Nondeterminism in Logic
Programs" , New Generation Computing,
3(1):43-70, 1985.

[Clocksin & Mellish 81] Clocksin, W. F. and Mellish, C. S. Program-
ming in Prolog, Springer-Verlag, 1981.

[Debray ok Mishra 88] Debray, S. K. and Mishra, P. "Denotational
and Operational Semantics for Prolog", J our-
nal of Logic Programming, 5:61-91, 1988.

[Francez et a185] Francez, N., Grumberg, 0., Katz, S. and
Pnueli, A. "Proving Termination of Logic Pro­
grams", in Logics of Programs conference,
LNCS 199, Brooklyn, 1985, Springer-Verlag.

[Hoare 85] Hoare, C. A. R. Communicating Sequential
Processes, Prentice-Hall, 1985.

[Jones & Mycroft 84] Jones, N. D. and Mycroft, A. "Stepwise de­
velopment of operational and denotational se­
mantics for Prolog", in Proceedings of the
Symposium on Logic Programming, pages
281-288, Atlantic City, 1984.

[Lindstrom ok Panangaden 84] Lindstrom, G. and Panangaden, P. "Stream­
based execution of logic programs" , in Sympo-
sium on Logic Programming, Atlantic City,
1984.

[Milner 89]

[Ross 91]

[Ross & Smaill 91]

[Ross & Wilk 90]

[Sawamura & Takeshima 85]

155

Milner, R. Communication and Concur-
rency, Prentice Hall, 1989.

Ross, B. An Algebraic Semantics of Pro-
log Control, PhD thesis, Department of Ar­
tificial Intelligence, University of Edinburgh,
Edinburgh, Scotland, 1991. (forthcoming).

Ross, B. J. and Smaill, A. "An Algebraic Se­
mantics of Prolog Program Termination", in
Proc. Eighth International Conference on
Logic Programming, Paris, France, 1991.

Ross, B. J. and Wilk, P. F. "A Semantic Ap­
proach to Proving Prolog Transformations Us­
ing Cut", Technical Report DAI 488, Dept. of
AI, University of Edinburgh, 1990.

Sawamura, H. and Takeshima, T. "Recursive
Unsolvability of Determinacy, Solvable Cases
of Determinacy and Their Applications to
Prolog Optimization", in Proceedings of the
Symposium on Logic Programming, pages
200-207, 1985.

Accessing Relational and NF2
Databases Through Database Set

Predicates
Christoph Draxler

draxlerOifi. unizh. ch

Department of Computer Science,
Zurich University,

Winterthurerstrasse 190,
CH 8057 Zurich, Switzerland

Abstract

Database set predicates extend the definition of set predicates as they
are known in logic programming languages with access to external rela­
tional or NF2 (Non First Normal Form) database systems. A database
set predicate is a predicate of the form

db-set~redicate(ProjectionTera.DatabaseGoal.ResultList).

ProjectionTera is an atomic or compound term, DatabaseGoal a pos­
sibly complex database goal, and Resul tList a data structure that cap­
tures the instantiations ofProjectionTeracomputed by the evaluation of
DatabaseGoal. Database set predicates can access a multitude of exter­
nal database systems efficiently through maximally restrictive queries.
Database set predicates embed the set-orientated database evaluation
into the tuple-orientated evaluation of logic languages, thus avoiding
the memory management and control flow problems of traditional ap­
proaches.

Keywords: Prolog, relational databases, NF2 databases, coupled sys­
tem, set predicates, non-deterministic selection, higher­
order control

1: Introduction

The close relationship between the relational model and languages based on
first-order predicate logic has long been recognised [Gallaire &: Minker 78,
Kowalski 82, Gallaire et a184]. Any relational query can be expressed in a logic
language, and thus it was only natural that with the emergence of a powerful
logic programming language such as Prolog [Roussel 75, Clocksin &: Mellish 87]

157

systems were developed that couple a logic programming language with rela­
tional database systems [Chang &; Walker 86, Bocca 86, Ceri et al87, Ioannides
et al 88, Quintus 88, Nussbaum 88, Bocca et aI89].

Such systems are known as coupled systems. Both deductive databases, i.e.
database systems with deduction capacities, and persistent logic programming
language systems, i.e. systems in which data objects live longer than for the
execution of a program, may be considered as special cases of coupled systems.

In the following Section I will give a brief outline of the main concepts
of coupling a logic programming language with external databases. Then, in
Section 3, I propose an approach based on set predicates. In Section 4, I discuss
the approach and present some implementation issues. Section 5 contains a
sample application with a translation from Prolog to SQL. Section 6 deals with
future work, and Section 7 gives a conclusion.

2: Integration and Coupling

For the implementation of a coupled system there are two main concepts, in­
tegration and coupling. These two concepts may be applied on a physical and
on a logical level [Bocca 86].

The physical level relates to the system architecture. Integration on the
physical level means that a logic programming system and a database system
are integrated into one single system. Coupling on the physical level means
that both systems operate independently and are connected through some com­
munication channel.

The logical level relates to the system language of the coupled system.
Integration on the logical level means that the database access language is
fully integrated into the logic language. Coupling on the logical level means
that the logic language and the database language are different languages.

I prefer to use the terms tight coupling and loose coupling for integration
and coupling respectively on either level. These terms reflect the fact that
there is a smooth transition between the two extremes.

Characteristic criteria such as efficiency, independence, and expressive power
determine the properties of coupled systems [O'Hare &; Sheth 89, Draxler 90b].
Efficiency and the independence of a particular database system implementa­
tion relate to the physical level, whereas the expressive power relates to the
logical level.

The efficiency of a coupled system is determined by the interface between

158

the database and the logic programming language system. In a physically
tightly coupled system data in the database component can be directly ac­
cessed by the logic programming language, and the efficiency of such a system
is inherently high. In a physically loosely coupled system data must be trans­
ferred between the database and the logic language system. Efficiency is thus
determined by the amount of data retrieved from the database system. It is
medium in systems that allow maximally restrictive queries, and low in systems
with less restrictive query facilities.

Physically tightly coupled systems can only access their built-in database,
whereas physically loosely coupled systems may, in principle, access a multitude
of external databases. Independence is thus low for physically tightly coupled
systems, and high for physically loosely coupled systems.

The languages used in coupled systems can be ordered hierarchically. Re­
lational algebra is the least expressive language. Datalog, a function-free Horn
clause language, can express everything that can be expressed in relational al­
gebra plus recursion. Prolog is even more powerful than Datalog because it
includes function symbols which may be used to build complex terms such as
lists or trees.

2.1: Related work

[Li 84] was the first to implement entirely in Prolog a relational database sys­
tem featuring different query languages. PROSQL [Chang & Walker 86] is a
logically and physically loosely coupled system that includes SQL statements in
the argument position of a reserved sql/l predicate. The result relation from
the database system is asserted into the Prolog workspace. The main problem
of this approach is that queries cannot be restricted dynamically. Workspace
overflow is likely to occur because no provisions are made to remove a relation
from the workspace.

EDUCE [Bocca 86], CGW [Ceri et a187] and BERMUDA [Ioannides et al
88] aim at an increase in efficiency through a tighter physical coupling. EDUCE
accesses single relation tables through a low-level database access mechanism
and stores result relations in buffers in the communication channel. The prob­
lem with buffers is that the buffer contents can be overwritten by subsequent
database requests. CGW reduces the amount of data to be asserted into the
Prolog workspace by avoiding the recomputation of queries that have been
solved already. CGW accesses single relation tables, and data is fetched di-

159

rectly from a physical page. Again, caw has no provisions for an automatic
deletion of facts from the Prolog workspace. BERMUDA is designed for a spe­
cific database machine, and it relies on so-called agents that manage a limited
number of database requests of a Prolog system. Result relations are stored in
files and Prolog accesses them one tuple at a time.

The experience gained with these systems led to the development of true
physically tightly coupled systems.

KB-Prolog [Bocca et al 89] features a database system integrated into a
Prolog system. Prolog is extended through relations as data structure primi­
tives, and the operations of relational algebra are supplied as evaluable predi­
cates. However, KB-Prolog allows the use of the destructive assignment which
makes a declarative reading of programs difficult. Furthermore, switching
between language paradigms is necessary because data retrieval is achieved
through the logic language, whereas any database manipUlation can only be
done through the relational operators.

Nussbaum has developed a physically and logically tightly coupled system
using delayed evaluation [Nussbaum 88]. In this system, database calls are
delayed as long as rules can be applied. Only then a complex database query is
compiled and evaluated in the database. Evaluation is strictly set-orientated.
However, the system language is restricted to a language less expressive than
Datalog because it only allows linear recursion and excludes function symbols.

LDL [Chimetti et al 90] is a knowledge base system that is based on first­
order logic with set evaluation. It is currently implemented as a prototype
system without an external database system. LDL considers itself to be not a
coupled system, but a totally new and fully declarative programming language.

Quite the opposite goal is pursued in KBL [Manthey et al 89]. KBL is a
knowledge base language that strictly separates procedural from declarative
aspects. According to the authors this clear distinction is necessary to express
the different semantics of a command, e.g. a print command, and those of a
logical expression, e.g. a condition.

Most of today's commercial Prolog implementations offer an interface to a
variety of database systems. In general, most systems access external databases
similar to the way it is done in Quintus Prolog [Quintus 88]. Database access
must be defined explicitly, and this definition is static. A database request is
mapped to the data manipulation language of the database system and evalu­
ated there. Tuples are retrieved one at a time from the database system using
cursors, and the attribute values are accessible as variable bindings. The prob­
lem with this approach is that it relies on a low-level coordination of control in

160

the logic language and the database system, and that database access definition
is static.

2.2: Conclusion

Physically tightly coupled systems have reached a state of maturity now. The
main limitation of this approach is the inseparable integration of the logic pro­
gramming system and the database system. This makes these systems efficient,
but at the same time restricts their applicability for real-world problems where
information is retrieved from possibly many databases. On the logical level,
these systems are either tightly coupled and have a logic language restricted to
Datalog like in the system by Nussbaum, or they are loosely coupled and force
the user to switch between two different language paradigms as in KB-Prolog.

Physically loosely coupled systems, however, still have a large potential for
further development and new applications. In principle, any external relational
or NF2 database system can be coupled to a logic programming language. With
the amount of information already available in public or commercial databases,
the importance of this feature cannot be overestimated.

As shown above, the main problems of physically loosely coupled systems
are memory management in the logic programming system, the difficult coordi­
nation of control in both systems, and the integration of a maximally restrictive
database access into the logic programming language.

From this brief overview it follows that an approach based on a logically
tight and physically loose coupling offers the generality of a loose physical cou­
pling plus the seamless integration of database access into the logic language.

3: Database Set Predicates

The approach presented here is that of a tight logical and loose physical cou­
pling of a logic programming language with relational or NF2 database systems.

3.1: Definitions

A coupled system consists of a logic language connected to a relational or NF2
database system. The database is accessed before or during the evaluation of

161

programs formulated in the logic language.
A logic program consists of an ordered set of program clauses. Clauses are

either facts, roles, or goals. A predicate is defined through an ordered set of
facts and rules with the same predicate symbol and arity. The e.rlension of
a predicate is its set of facts, whereas the intension is given through its set
of rules. A predicate is defined extensionally if its definition consists of facts
only.

Definition 1 (Database Predicate) A database predicate is a predicate
that is stored in an external database. A database fact is an extensionally
defined database predicate stored in a relation table.

There exists a mapping from the predicate name to the name of the
relation table, and the predicate arity is equal to the number of relation
attributes. There also exists a mapping from the position of the predicate
arguments to the corresponding relation attributes.

For relational databases the argument values of database predicates are
ground atomic values - i.e. they cannot be decomposed into substroctures.
For N~ databases the arguments may be stroctured terms.

The standard comparison operators for constant values, e.g. ">", "<",
"=" etc., can be thought of as relation tables with two attributes corresponding
to the operands. The standard arithmetic functions can be thought of as
relation tables with attributes for the operands and the result respectively.

Definition 2 (Database Goal) A database goal is a goal that consists of
positive or negative literals L1, ••• ,Ln, connected through the logical con-
nectives" and V (written as "," and "i", respectively) such that

• Li is a database predicate, comparison operation, or arithmetic func-
tion,

• at least one Li is a positive database predicate,

• all arguments of a negated literal are bound,

• all input arguments of arithmetic functions and all arguments oJ-
comparison operations are bound.

Variables in a database goal may be existentially quantified by A /2. The
binding of existentially quantified variables is not returned to the calling
goal.

162

3.2: Set Predicates in Prolog

Set predicates are used whenever a1lso1utions to a given goal are to be computed
with the variable bindings saved for later processing. This is not possible with
backtracking alone [Warren 82].

Prolog's set predicates are of the form

set~redicate(Template, Goal, Instantiations).

with set.predicate one of tindall, bagot or setot. Template is a term.
Goal is a goal for which all solutions are computed. The variable bindings of
each answer to Goal are carried over to the template and Instantiations is
unified with the list of instantiated templates.

The main difference between the three predicates lies in their treatment of
free variables in the goal argument. A variable is free if it does not occur in
Template and it is not existentially quantified.

tindall/3 implicitly treats free variables in the goal argument as existen­
tially quantified. It is deterministic, and always succeeds, returning the list of
template instantiations is the evaluation of Goal succeeds, and the empty list
if the evaluation of Goal fails. setot/3 and bagot/3 both return the bindings
of free variables. Both succeed if the evaluation of Goal succeeds, and return
a distinct list of template instantiations for each binding of the free variables.
They both fail if the evaluation of Goal fails. The list in setot /3 is sorted and
does not contain duplicate entries.

In an abstract definition, set predicates can be seen as consisting of two
subgoa1s:

set.predicate(Template, Goal, Instantiations) :­
compute~lJSolutions(Template, Goal, Bindings),
collect~lJlolutions(Template, Bindings, Instantiations).

Both compute~1..ans.ers/3 and collect..all..ansvers/3 can be imple­
mented in Prolog using assert/1 and retract/I. In many implementations
either one of the two or even both are implemented in a different language for
efficiency reasons [O'Keefe 90].

163

3.3: Set Predicates for Accessing Relational Databases

Set predicates are of a double nature. They embed a set-orientated evaluation
into the tuple-orientated ,evaluation strategy of the logic language, and at the
same time they may capture sets in a primitive data structure of that language.
It is exactly this property that allows set predicates to be used to access external
databases.

Definition 3 (Database Set Predicate) A database set predicate is a set
predicate, called in the form

db..set..predicate(ProjectionTena, DatabaseGoal, ResultList).

that accesses external relational or NF' databases to prove its DatGbGseGoGl
argument.

The general idea is to replace compute..All..ana.ers/3 with a database eval­
uation. The goal of a database set predicate must be a database goal. This goal
is translated to an equivalent database query and transmitted to the database
system where it is evaluated. The result relation is sent back to the logic
programming language and placed in a list data structure (Figure 1).

Logic Language System
db et..predicate (ProjectionTel'll, DatabaaeGoal. Resul tList)

Communication
Channel

Database System

" /

database
query

result
relation

Figure 1: Database Set Predicate Schema

3.4: Database Set Predicate Definition

Database set predicates are formed according to the following schema:

164

db-Bet-predicate(ProjectionTerm, DatabaseGoal, ResultList):­
database~oal(DatabaseGoal),
translate(ProjectionTerm, DatabaseGoal, QueryTerm),
evaluate-inJib(QueryTerm, Result),
make-1ist(Result, ProjectionTerm,

DatabaseGoal, ResultList).

where db-Bet-predicate is either db-Betof or db.1indall. database~oal/l
checks whether the goal argument of db t-Predicate/3 is in fact a database
goal. translate/3 translates the database goal and the projection term into a

query which is represented as a term in the logic language. evaluate-inJib/2
is tbe interface predicate to the database system. QueryTerm is the input
argument which is transmitted to the relational database system, and Result is

any primitive data structure that captures the resulting relation. make.list/4
generates the final list from the template term, the database goal, and the data

structure that contains the result relation.
The subgoals in the body of a database set predicate can be implemented

in the logic language. evaluate.inJib/2 is the only predicate where there is a
reference to some evaluation mechanism outside the logic language.

4: Database Set Predicates - Discussion

In this section I will discuss memory management, higher-order control, and
control flow in database set predicates.

4.1: Memory Management

Memory requirements in physically loosely coupled systems are always high
because data is copied from the database to the logic programming system.

In coupled systems memory availability is the main limiting factor and
therefore great care should be taken to

• minimise memory demand;

• reclaim memory as soon as possible.

Restricting the amount of data retrieved from the database system is a good
way to reduce memory demand.

165

In database set predicates the language used to access external databases is
a non-recursive subset of the logic language. This subset is restricted in such
a way that it is equivalent to relational or NF2 algebra [Korth &; Roth 90].

Maximally restrictive queries are achieved through a variety of techniques.
Constant propagation restricts queries through selection conditions. Join-
selectivity can be exploited through accessing multiple tables in a complex
query. Dynamic database access definition allows the current. state of the
.evaluation be used in the formulation of queries. This is possible because in
database set predicates terms are used to express the database query, and these
terms are passed on to the database set predicate as arguments.

Finally, projection and selection are independent in database set predi­
cates. This allows the restriction of queries through constant propagation of
variables which are not included in the projection term. This technique is new
in coupled systems, and it is thus described in more detail.

4.1.1: Independence of Selection and Projection Expressions

In coupled systems selection is expressed through explicit comparison opera­
tions or implicitly via variable bindings in the logic language. Projection can
be expressed in a variety of ways: either through a reserved variable identifier
such as "_" in Prolog, by defining a database predicate as a rule, or by using
a projection term. The problem with the first approach is that joins can­
not be expressed with the anonymous variable but only with named variables.
The problem with expressing projection through rules is that variables occur­
ring only in the body of the rule cannot be accessed by calling the rule, and
hence cannot be used for query restriction. Furthermore, in both approaches
projection is defined statically.

In database set predicates projection is expressed through a projection term.
A projection term contains a possibly empty subset of the variables occurring
in the database goal. For example,

db-Bet~redicate«I,Y,Z),p(I,a,Y,Z),Li8t)

has (I, Y ,Z) as projection term and p(I,a, Y ,Z) as database goal.

With a projection term it is possible to express projection independently
of the other database operations which constitute the query. All variables in
the database goal are accessible from outside the database set predicate. Every
variable binding in the database goal can thus be exploited to restrict the query.

166

4.1.2: Memory Requirements

Memory requirements are determined by the granularity of retrieval from the
database system, and by the data structures which hold the data retrieved from
the database system.

With set retrieval, a result relation is read in as whole, whereas with tuple
retrieval tuples are read in one by one (in general through backtracking). Set
retrieval thus requires storing relations, as opposed to storing single tuples.
Despite its higher memory requirements, set retrieval can be justified in the
case of small result relations, efficient memory management, or if higher-order
functions, such as the number of tuples retrieved, are required. In terms of time­
efficiency set retrieval is certainly cheaper than retrieving a complete relation
tuple by tuple which requires a fetch-next-tuple command for every single
tuple.

At a first glance, the list data structure in database set predicates seems to
be a particularly expensive data structure for storing database relations because
a list with n entries of size m requires up to n x (m + 2) memory locations.
More efficient representations, requiring as little as n x m + 1 memory cells,
have been developed and are implemented in some Prolog systems.

However, asserting relations into the workspace, as it is done in PROSQL
and COW, is even more expensive (n(m + 3) memory cells plus index) and,
even worse, very time-consuming because it requires the modification of the
code space in the logic language system.

The major advantage of using a standard data structure is that the auto­
matic memory management of the logic programming system is exploited, and
that standard data structures are handled efficiently.

The list of a database set predicate is accessible through a logical variable,
and variables have only a limited life span. Memory is allocated for the variable
when it is first instantiated, and this memory can be reclaimed upon determi­
nate exit or failure of the current goal. It is thus possible to determine for each
logical variable when it can be safely discarded.

Storing a database relation in a single data structure has the additional
effect that the tuples belonging to one database query are kept together. Each
new database query generates a new list that is distinct from the previous lists,
and such a list can be released independently of previous database queries.
With asserting facts into the workspace two alternatives are possible: either
a fact is stored only once, or it is stored together with a unique database

167

reference for the query by which it was retrieved from the database. The first
alternative requires less space, but it is not possible to retract any clause from
the workspace until it is certain that it will not be needed any more. The
second alternative allows retracting all tuples with the same unique database
reference upon backtracking - but then it requires much more space than storing
the relation in a list.

4.2: Adding Higher-Order Control

The term higher-order control is used in the sense of making statements about
a collection of solutions. With set predicates it is possible to change the order of
solutions and to compute the number of solutions or functions over particular
attributes.

In coupled systems it is of great interest to delegate higher-order control to
the database system for efficiency reasons. Most commercial database systems
support such higher-order control, despite the fact that it is not expressible in
the relational database model.

In database set predicates sorting and duplicate elimination is expressed
implicitly through the use of db-Betof/3. The result relation is sorted accord­
ing to the order of free variables in the database goal and the order of arguments
in the projection term.

Grouping is expressed through free variables in the database goal whose
bindings are returned as a result of the database evaluation. This effectively
implements the nest operator of NF2 databases. With all database goal vari­
ables also in the projection term, the unnest operator of NF2 databases is
expressed.

Aggregate functions such as min, max, avg, count, and SUlD can be ex­
pressed by writing them as ternary relations with variable arguments. The
first argument denotes the attribute, the second argument stands for the ap­
propriate relation table, and the third argument receives the function value.
This variable must also occur in the projection term. For example

1- db-Betof(Avg,avg(X,p(X,Y),Avg),List).

retrieves from the database the average value of the first attribute of the rela­
tion table corresponding to the subgoal p/2. Note that X in the first argument
of avg/3 is used to specify the attribute for which the aggregate function is to

168

be computed. With Y a free variable, the relation table is grouped according
to the binding of Y, and the average is computed for every group.

4.3: Control Flow

One of the main problems of coupled systems is that there has to be some
kind of coordination between the database system and the logic language sys­
tem. This coordination is a non-trivial task since both systems have different
strategies for their respective evaluations.

In a coupled system the logic language system is the master and the database
system is the slave. Control over the evaluation must reside in the logic lan­
guage system. It can only be transferred to the database system for the evalu­
ation of queries.

In coupled systems where the evaluation of the logic program waits until
the database query has been computed there is little coordination necessary.
This is not the case in systems where the database supplies only one tuple
which is then further processed. In such a system overall control is difficult
to achieve because there are often procedural constructs in the logic language
system that the database system does not understand.

The classical example is the cut predicate in Prolog. cut makes the current
evaluation deterministic and memory could be reclaimed. However, there is no
way of telling the database system to release a cursor because Prolog does not
know cursors, and the database system does not understand the cut predicate.

The same is true for coupled systems that write result relations into a buffer
in the communication channel. Subsequent database queries will write their
result into the same buffer, overwriting the previous contents, whether they
have been used up or not. Multiple buffers do not solve that problem, because
their number is always finite.

Database set predicates, however, have no interference between the control
mechanisms of both systems. The logic programming language evaluation waits
until the query has been evaluated completely, and then continues with its
evaluation. cut has the usual effect, and any standard method to reclaim
memory is applicable because the database relations are held in a primitive.
data structure.

169

4.4: Summary

Database set predicates embed set access into the standard tuple-at-a-time
evaluation of logic programming languages. Set access is confined to database
set predicates and does not affect the remaining language in any way.

Database set predicates implement a true logically tight coupling because
the database access language is a sublanguage ofthe logic language. Through
the restriction of the goal argument to database goals relational algebra can be
fully exploited for formulating queries, and thus maximally restrictive queries
through projection, selection on attribute values and joins are possible. Fur­
thermore, through the distinction of free variables the NF2 operators nest and
unnest can be expressed, and hence NF2 databases can be accessed.

Using the set predicates for database access is a flexible, efficient, and power­
ful concept. It is flexible, because different relational databases can be accessed
by translating the database goal into the appropriate database languages. It
is efficient, because variable bindings and information on quantification can be
exploited to restrict a database query. It is a powedul concept in that any in­
crease in the computational power of the database system is directly available
to the logic language system.

Finally, using set predicates for database access is a clean-cut concept.
There is no intederence between the database and the logic language evalu­
ation strategies. Either system has full control over its operations, and neither
system has to know any evaluation strategy details of the other. On the phys­
ical level this approach is a true loose physical coupling.

5: Example

Consider the example of the following database request:

"Retrieve from the database the destinations reachable by planes
with more than 150 seats. Print the departures, destinations, planes
and the respective number of seats in alphabetical order".

With database set predicates, this request is written as:

170

dbJletof «Departure,Destination,Plane , Seats) ,
104 (flight (10 ,Departure ,Destination, Plane) ,

plane(Plane, Seats),
Seats > Bound),

List) .

Bound must be bound to a constant value, e.g. 150, prior to the call of the
database set predicate. The equivalent SQL query is (with f and p range vari­
ables to identify the relation tables fiight and plane, respectively, uniquely):

SELECT DISTIICT f.departure,f.destination,f.plane,p.seats
FROII flight f, plane p
WHERE f.plane = p.type and p.seats > 160
ORDER BY f.departure,f.destination,f.plane,p.seats

The evaluation of the original goal continues with a selection predicate
that selects a tuple from the list representing the result relation. With non­
deterministic selection predicates such as .ember /2 this may be exhaustively
searched without further accesses to the database system. With deterministic
selection predicates the optimum record is selected from the list, and the list
can be discarded, releasing memory.

6: Future Work

Database set predicates are currently being implemented. They will be used
in a coupled Prolog and database system for synthesis planning in organic
chemistry [Draxler 90a].

The two main areas of further work are updates through database set pred­
icates and extending database goals to handle recursion. Until now database
set predicates are restricted to read-only database access, which is already suffi­
cient for many applications. However, updates through database set predicates
should in principle be possible by calling the predicate with an instantiated
list.

Pushing recursion into database set predicates is another interesting per­
spective of database set predicates. In general, a recursive Datalog rule can be
translated to a sequence of join and projection operations in relational algebra.
The techniques developed for this should also be applicable in database set
predicates.

171

7: Conclusion

I have shown that Prolog's set predicates can be used to couple Prolog with
relational and NF2 datatiase systems. This coupling is physically loose and
logically tight, which makes coupled systems possible that can access a variety
of external databases using the same logic language for database access and
application programs.

With database set predicates an increase in efficiency as compared to other
approaches to coupled systems is achieved through maximally restrictive queries,
a clean distribution of control, and efficient handling of standard data struc­
tures by the memory manager of the logic language system.

The efficient and natural database access with database set predicates and
non-deterministic selection predicates may be summarised in the formula

database access = database set 'PTedicate + selection 'PTedicate

172

References

[Bocca 86]

[Bocca et al 89]

[Ceri et al 87]

[Ceri et al 90]

[Chimetti et al 90]

[Chang It Walker 86]

Bocca, J. "EDUCE - A Marriage of Convenience:
Prolog and a Relational DBS" , in Proceedings of
the Third Symposium on Logic Programming, Salt
Lake City, 1986

Bocca, J., Dahmen, M. and Macartney, G. KB-
Prolog User Guide, Technical Report, 4.9.1989,
ECRC, Munich

Ceri, S., Gottlob, G. and Wiederhold, G. "Interlac­
ing relational databases and Prolog efficiently.", in
Proceedings of the First International Conference
on Ezpert Database Systems, ed. Kershberg, L.,
Benjamin-Cummings, 1987

Ceri, S., Gottlob, G. and Tanca, L. "Logic Program­
ming and Databases", Springer Verlag, 1990

Chimetti, D., Gamboa, R., Krishnamurthy, R.,
Naqvi, S., Tsur, S. and Zaniolo, C. "The LDL System
Prototype", in IEEE 7ransactions on Knowledge
and Data Engineering, vol 2, No. I, March 1990

Chang, C. L. and Walker, A. "PROSQL: A Prolog
programming interlace with SQL/DS", in Proceed-
ings of the First Workshop on Ezpert Database
Systems, ed. Kershberg, L., Benjamin-Cummings,
1986

[Clocksin It Mellish 87] Clocksin, W. and Mellish, C. Programming in Pro-
log, Springer Verlag, 1987

[Draxler 90a] Draxler, C. "Name Reactions in Organic Chem­
istry - A New Application Domain for Deductive
Databases", in Proceedings of DEXA 90, Springer
Verlag, Vienna, 1990

[Draxler 90b] Draxler, C. Logic Programming and Databases:
An Overview Ol1er Coupled Systems and a New
Approach based on Set Predicates, Technical Re­
port No. 90.09, Computer Science Department, Uni­
versity of Zurich, Sept. 1990

[Gallaire It Minker 78] Gallaire, H. and Minker, J. Logic and Databases,
Plenum Press, 1978

[Gallaire et al 84]

[Ioannides et al 88]

[Korth & Roth 90]

[Kowalski 82]

[Li 84]

[Manthey et al 89]

[Nussbaum 88]

[O'Keefe 90]

[O'Hare & Sheth 89]

[Quintus 88]

[Roussel 75]

[Warren 82]

173

Gallaire, H., Minker, J. and Nicolas, J-M. "Logic and
Databases: a Deductive Approach", in Computing
Suroeys, vol 16, No 2, June 1984

Ioannides, Y., Chen, J., Friedman, M. and Tsan­
garis, M. "BERMUDA - An architectural perspec­
tive on interfacing Prolog 'to a database machine" in
Proc;eedings of the Second International Confer-
ence on Ezpert Database Systems, ed. Kershberg,
L., Benjamin-Cummings, 1988

Korth, H. and Roth, M. "Query Languages for Nested
Relational Databases", in Proceedings of ICDT 90,
Paris, ed. S. Abiteboul, Lecture Notes in Computer
Science No. 470, Springer Verlag, Berlin, 1990

Kowalski, R. Logic and Databases, Research Report
82/25, Dept. of Computing, Imperial College of Sci­
ence and Technology, London 1982

Li, D. A Prolog Database System. Research Studies
Press, John Wiley & Sons Ltd., 1984

Manthey, R., Kiichenhoff, V. and Wallace, M. KBL:
Design Proposal of a conceptual language for
EKS, ECRC Technical Report TR-KB-29, Jan. 89,
Munich, 1989

Nussbaum, M. Delayed evaluation in logic pro-
gramming: an inference mechanism for large
knowledge bases, Diss No. 8542 ETH Zurich, 1988

O'Keefe, R. The Craft of Prolog, MIT Press, 1990

O'Hare, A. and Sheth, A. "The Interpreted-Compiled
Range of AI/DB Systems", in ACM SIGMOD
Record, vol 18, No I, March, 1989

Quintus Prolog Database Interface Manual. Quin­
tus Inc., Sunnyvale

Roussel, P. Prolog: Manuel de Reference et Utili-
sation. Technical Report, Groupe d'Intelligence Ar­
tificielle, Universite d'Aix-Marseille II, Marseille 1975

Warren, D. H. D. "Higher-order extensions to Prolog:
are they needed?", in Machine Intelligence 10, Ellis
Horwood, 1982

Can Filters do Magic for Deductive
Databases?

v.s. Lakshmanan C.H. Vim
la1csOca. concordia. ma%tIJell, (no email)

Department of Computer Science
Concordia University

Montreal, Quebec
Canada H3G 1M8

Abstract

The magic sets method [Bancilhon lit al86, Beeri & Ramakrishnan
87] is one of the most popular methods of recursive query processing
for deductive databases. The magic sets method and its variants may
be regraded as computing filters for restricting bottom-up evaluation of
rules and then al(plying these filten to various rules. There is a tradeoff
between the simp1icity of the filters and their effectiveness. The magic
sets method sacrifices the simplicity of the filters for their effectiveness.
[Sippu & S-Soininen 88] describes a method which always keeps the fil­
ter computation much simpler than the processing of the query, at the
expense of filten which can be much less tight than the magic predicates.
[Sagiv 90] describes a method 0/ envelop" which has the advantage that
the size of an envelope is much smaller than the size of magic predicates.
In this paper, we approach this tradeoff from a structural perspective.
We show that under certain conditions, which depend on the structure
of the rules, it is possible to use filters which are much less in size than
magic predicates, while preserving the effectiveness of magic predicates.
Thus, our filten are smaller than magic predicates, while the restriction
imposed by them is the same as that imposed by the magic predicates.

1: Introduction

One of the most popular methods of bottom-up query evaluation for deductive
databases is the magic sets method [Bancilhon et al86, Beeri & Ramakrish­
nan 87]. Indeed the magic sets method, (or one of its variants [Kerisit 89,
Ramakrishnan 88, Seki 89, Vielle 89]) has more or less become the standard
facility for recursive query processing. It is known that the magic sets method
and its variants are equivalent in the sense that they generate the same set of
facts for the lOB predicates [Ullman 89, Bry 89]. All these methods essentially

175

mimic top-down evaluation with memoing. However, in the overall time spent
on processing a query, the time for computing the magic facts should also be
accounted for. While a formal analysis of this has never been made - it is in­
trinsically hard - it is clear that there is some tradeoff between the efficiency of
computation of the magic facts and the effectiveness of the restriction imposed
by the magic predicates.

[Kifer &; Lozinskii 86] proposed a framework for efficient evaluation of re­
cursive queries. [Sippu &; S-Soininen 88] uses unary filters in place of the magic
predicate. Computation of these filters can be performed relatively efficiently.
However, these filters can be much less tight than the magic predicates in re­
stricting the generation of "useless" tuples. [Sagiv 90] describes the envelope
method which uses several different envelope to restrict the evaluation of rules.
Envelopes are always of the order of the EDB in size and thus smaller than
magic predicates, but are less tight than magic predicates.

Both the methods of [Sippu &; S-Soininen 88] and [Sagiv 90] may be viewed
as particular realisations under the framework of [Kifer &; Lozinskii 86]. In
comparing the dynamic filtering of [Kifer &; Lozinskii 86] with magic sets we
observe that the dynamic filtering method has the advantage that the filters
computed are small in size as compared to magic predicates. On the other hand,
the restriction imposed by these filters can be far less tight than the one imposed
by magic predicates. In this paper, we show that there is a structural way to
approach this tradeoff between filter size and filter effectiveness. Specifically, we
show that under certain circumstances, it is possible to keep the sizes of filters
small while still preserving the effectiveness of restriction achieved by magic
predicates. In the next section, we motivate our method with an example.
In Section 3, we provide the preliminary notions. In particular, we introduce
the hypergraph representation of rules, which offers a convenient formalism for
describing several notions. In Section 4, we describe the basic magic filters
method in detail. We identify the problems associated with the basic method
and discuss the improved method which overcomes these problems, in Section
5. In Section 6, we provide a brief comparison of the performance of dynamic
filtering, magic sets, and magic filters, and draw conclusions.

2: Motivation

The objective of a rewriting method of query processing is to transform the
given query program into a new program, which has restrictions, in the form

176

of filters, imposed on original rules, together with rules for computing these
filters. Ideally, we would like filters which are small compared to the original
IDB predicates, yet these filters should be as tight as possible in restricting the
generation of useless tuples for the IDB predicates. It is well known that the
restriction imposed by the magic predicates is by far the tightest among such
''filters'' produced by rewriting methods. Although imposing tight restrictions
on rule evaluation is of obvious importance, the amount of work required for
computing the restrictions, as well as their sizes should be considered in the
overall time for query processing.

Indeed, there are examples in which the computation of the magic pred­
icates dominates the overall query processing time. The natural question to
ask is whether it is possible to keep the sizes of filters small while preserving
the tightness of restriction enjoyed by magic predicates. Our thesis is that
the magic sets method sometimes keeps essentially unrelated sets of bindings
together in the form of one magic predicate, which unnecessarily increases the
size of the filter (i.e. the magic predicate).

To understand the considerations involved, let us consider an example. Here
is a simple program and a query.

p(X,Y,Z) :- flat(X,Y,Z).
p(X,Y,Z) :- upa(X,X1), upb(Y,Y1), p(X1,Y1,Z1), down(Z,Z1).

:- p(1,2,Z)?

Program 1.

Notice that if subgoals are processed in the order given, then the binding pat­
tern associated with the IDB predicate p is unique.

Program 2 is the magic transformed program corresponding to Program 1.

mg(1,2).
mg(X1,Y1) '­
sup1(x,Y,X1) .­
sup2(X,Y,X1,Y1)
sup3(X,Y,Z1) .­
p(l, Y.Z) --
p(X, Y,Z) :-

sup2(X,Y,X1,Y1).
mg(X,y), upa(X,X1).

:- sup1(X,Y,X1), upb(Y,Y1).
sup2(X,Y,X1,Y1), p(X1,Y1,Z1).
mg(X,Y), flat(X,Y,Z).
sup3(X,Y,Z1), down(Z,Z1).

Program 2.

177

Notice that the predicates upa and upb are not connected at the time they
are processed. Thus, the bindings for 11, Yl in sup2(I, Y ,11, Yl) are computed
by performing a Cartesian product between the bindings ofX1 in sup1(I, Y ,11)
and those of Yl in upb(Y, Yi)1. Indeed an optimal way to compute the join
of the three relations upa(I,ll), upb(Y, Yl), and p(ll, Yl,Zl) is to first join
upa (or upb) with p and join the result with upb (or upa). The mechanism of
the magic sets method has the effect of forcing the order (upa 1><1 upb) 1><1 p on
the above join expression. The consequences are

(i) an unnecessary Cartesian product upa x upb (since upa and upb are not
connected at this point, upa 1><1 upb = upa x upb) is computed;

(ii) the second join (upa 1><1 upb) 1><1 p involves a substantially large relation
corresponding to the Cartesian product.

Let us next consider how the dynamic filtering method would handle this
situation. For ease of comparison, we cast the method of [Kifer &; Lozinskii 86]
as a rewriting method, which essentially implements the same idea. Program
3 shows the rewritten program according to the method of dynamic filtering.
The dynamic filtering method essentially maintains one filter for each bound
argument of each predicate. For example, there are two filters associated with
p, namely tpl and tp2. Note that the rules in the transformed program in
Program 3 are divided into five groups. The rules in group 1 initialise the
filters with the query constants. The rules in group 2 filter the various relations
using the associated filters, to create the filtered relations. For instance, the
rules r9 and rIO define the filtered relation tp, using the two filters associated
with p. Group 3 rules contain the transformed original rules, making use of the
filtered predicates. Group 4 rules implement sideways propagation (commonly
called sideways information passing). Finally, the rules in Group 5 update
the filters, an activity called backward propagation in [Kifer &; Lozinskii 86].
Notice that the problem of Cartesian product is clearly avoided by the dynamic
filtering method. In addition, the sizes of filters are in general much smaller
than the size of the magic predicate which carries the Cartesian product of two
independent bindings, and expands this Cartesian product through recursion.

However, there are examples showing that the restriction imposed by dy­
namic filters can be much less tight than the one imposed by magic predicates.
This motivates the question: can we combine the ideas of magic sets and dy­
namic filters in order to realise the advantages of both? We propose the method

1 Although supl and upb share the variable Y, • quick re1lection will reveal that sup2
essentially corresponds to the Cartesian product up. X upb, with restrictions imposed by ag

178

of magic filters as a partial answer to this question.

* Group
1', :

1'2 :

1'3 :

1'4 :

1 -- Initialisation of Filters
tupal(l) .
tupbl(2) .
tflat1(l) .
tflat2(2).

* Group 2 -- Filtering Original Relations
1'5: tflat(X.Y.Z):- tflatl(X). flat(X.Y.Z).
1'6: tflat(X.Y.Z):- tflat2(Y). flat(X.Y.Z).
1'7: tupa(X.Xl):- tupal(X). upa(X.Xl).
1'8: tupb(Y.Yl):- tupbl(Y). upb(Y.Yl).
1'9: tp(Xl.Yl.Zl):- tpl(Xl). p(X1.Yl.Zl).
1"0: tp(X1.Yl.Zl):- tP2(Yi). p(Xl.Yl.Zl).
1',,: tdown(Z.Zl):- tdown2(Zl). down(Z.Zl).

* Group 3 -- Generation of Answers
using Filtered Relations

1'12: p(X. Y .Z) :- tflat(X. Y .Z).
1"3: p(X.Y.Z):- tupa(X.Xl). tupb(Y.Yl).

tp(Xl.Yl.Zl). tdown(Z.Zl).

* Group 4 -- Sideways Propagation.
1"4: tpl(X1):- tupa(X.Xl).
1"5: tp2(Yi): - tupb(Y • Yl) .
1"6: tdown2(Zl):- tp(Xl.Yl.Z1).

* Group 6 -- Backward Propagation.
1'17: tflatl(X):- tpl(I).
1"8: tflat2(Y):- tp2(Y).
1"9: tupal(X)' - tpl(X) .
1'20: tupbl(Y): - tp2 (Y) .

Program 3.

3: Basic Definitions

Before discussing the magic filters method, we need several notions. We assume
the reader is familiar with the usual terminology associated with bottom-up
processing, such as binding patterns, sideways information passing, etc. as
discussed in [Beeri & Ramakrishnan 87], [Ullman 89]. The first notion we need
for our method is a more general concept of a binding pattern. Traditionally, a
binding pattern of an n-ary predicate 'P is a string of length n over the alphabet

179

{b, f}, where the occurrence of b (f) in a position indicates the corresponding
argument of" is bound (free). Since our intention is to keep bindings that
are independent separate, we need a notation for indicating which bindings are
related. In this context, a predicate may well receive its bindings from several
predicates (instead of one). Thus we need to know the connectivity between
a predicate and its various sources of bindings. We choose hypergraphs as a
convenient formalism for this purpose.

A hypergraph (Berge 73] is a pair H = (N, E), where N is a finite set of nodes
and E is a set of hyperedges, E ~ 2N , such that U E = N. We represent a rule
(more precisely the body of a rule) as follows. We let N be the set of distinct
variables in the body of the rule. A predicate "(Xl, ... , Xm), where Xi are (not
necessarily distinct) variables is represented using a hyperedge which contains
exactly those nodes corresponding to the distinct variables among XI, ... , Xm .

For example, Figure 1 shows the hypergraph representation corresponding to
the rule

p(X,Y,Z) .- q(X,Y,X,W), r(X,Z,Y,Z).

Program 4.

{q4}
{q,,<lJ,rl }
{ql,n}
{rl,r4}

Figure 1: Hypergraph representation for Program rule 4.

Associated with each node we have a set indicating the argument positions
of predicates where the variable corresponding to the node appears. For sim­
plicity, we use a predicate name to refer to the hyperedge it corresponds to.
Next, we define the notion of a binding group. Consider a rule h.:- 91, ... , 9m.
Suppose that the subgoals 9i are processed in the order given. Let H denote
the hypergraph corresponding to this rule and Hg, be the set of edges corre­
sponding to 91, ... , 9i-l. Then by a binding group of 9i we mean any maximal
set of nodes of the hyperedge 9i that are connected in the hypergraph induced
by Hg, • For example, consider the rule

180

p(I,Y,Z) :- g1(I,11), g2(Y,Y1), g3(Z,Z1),
g4(11,12,Y2), g6(Y1,Y2,Z2),
g6(Z1,U1), q(12,Y2,Z2,W2,U1).

Program 5.

Figure 2 shows the hypergraph representation of this rule. (For clarity, we
omit the argument position sets associated with the various nodes, which can
be obtained by inspection.) The binding groups of q are {Vlo V2, V3} and {Vs}
which correspond to the argument positions {qt, ~,~} and {~}.

gl_--I'- ~ __ g3

g4_--I~
~ __ ~~ ____ +-____ ~~r---g6

Hq =
BGq =

{1, ... ,6}
{V1, Vl, Vd, {Vs}

Figure 2: Hypergraph for Program rule 5.

We next need a generalised notation for binding patterns capable of repre­
senting binding groups. This will be used later to determine which bindings
should be kept separate. We use the letter b with different subscripts to denote
different binding groups. More precisely, the binding pattern of a predicate
p is a string of length n over the alphabet {bt, ... , bn , f}. The interpretation
of a binding pattern is that those argument positions for which the binding
pattern has the symbol f are free and all other arguments are bound. Further­
more, two argument positions of p are in the same binding group if and only
if the binding pattern contains the same symbol, say bi, for those positions.
For example, for the predicate q in Figure 2, the associated binding pattern is'
qb1b 1b 1fb2• Notice that this notation not only conveys the information about
the bound/free status of arguments; it also specifies the binding groups among
arguments.

With each rule we associate a set of filters. These filters are determined by

181

the binding pattern with which the rule (more precisely the head predicate of
the rule) is called. There is exactly one filter corresponding to each binding
group in the binding pattern. The arguments of a filter are those corresponding
to the various arguments in a binding group. For instance, consider the rule

p(X,Y) :- r(X,Xi), s(Y,Yi), q(Xi,Yi).

Program 6.

Suppose the rule is called with the binding pattern pb1 b2. Then we create
two filters tpi and tp2 corresponding to the two binding groups. The filter tpi
corresponds to the first argument of p while tp2 corresponds to the second.
With these preliminary notions, we next describe the basic method of magic
filters.

4: Magic Filters - The Basic Method

For simplicity, we shall assume that in the programs we consider, the subgoals
in rules are so ordered as to guarantee a unique binding pattern for each lOB
predicate. There is no loss of generality in this assumption. The techniques of
transforming an arbitrary program so the unique binding property holds are
a simple extension of similar techniques for the traditional notion of binding
pattern [Ullman 89], and are discussed in [Vim 91], where we also discuss sev­
eral heuristics for obtaining "good orders" for processing subgoals in a rule. In
view of the above, it follows that each rule in the program will be called with a
unique binding pattern. In the following we describe the basic method of using
magic filters, with reference to Program 1.

Note that the subgoal ordering in Program 1 guarantees that the only IDB
predicate p is always called with the same binding pattern pb1 b2f. We rewrite.
the program w.r.t. the query

:- p(i,2,Z)?

as follows.

182

Step 1 - We create a filter corresponding to each binding group of each IDB
predicate. In this case, this leads to two filters for 'P, which we denote tp1 and
tp2. We initialise the filters using the query constants. Thus, we have the unit
clauses

tpl(l) .
tp2(2) .

Step 2 - We apply the various filters to the original rules. We implement
this in a way that generalises the idea of supplementary predicates. To make
the distinction clear, we call the predicates generated by this process filtered
predicates. The example will clarify the process. Application of the filters to
the first rule yields the rule

p(I,Y,Z) :- tpl(I), tP2(Y), flat(I,Y,Z).

For each rule containing several subgoals, we determine the predicates q1, ... ,qn,
with rank iI, ... , in. in the subgoal ordering, such that

(i) qj contains at least one bound output variable2 ;

(n) qj is disjoint with all predicates whose rank in the subgoal ordering is
less than ij.

For each of the predicates qj identified above, we create the filtered version of
qj by applying the appropriate filter(s). The filters to be applied are identified
by using the argument position(s) that each filter corresponds to. For example,
for the first rule, the predicates to be filtered are easily seen to be a and b. The
filter to be associated with a is tpl since it corresponds to the first argument
of p and a contains the output variable I which occurs in the first argument of
p in the head. Thus, we generate the filtered predicates

tupa(I,Xl) :- tp1(X), upa(X,11).
tupb(Y,Y1) :- tp2(Y), upb(Y,Y1).

Next we implement sideways propagation (of information) in the form of rules.
This process is, in principle, similar to the use of supplementary predicates
in the case of the magic sets method. The major difference is that instead

2 An output yanable in a rule ia any yariable that appears as an argument of the head
predicate .

183

of a chain of supplementary predicates, we may have several streams of such
predicates, generated by the fact that we always try to maintain independent
bindings separate. Another difference is that two different streams could merge
whenever the streams share some common arguments with some predicate. For
instance, the two filtered predicates above may be viewed as two independent
supplementary streams. The next subgoal to be processed is the predicate p,
and since the streams share common arguments with p, we merge them as
follows.

fp(X,Y,Zl) :- fupa(I,11), fupb(Y,Yl), p(Xl,Yl,Zl).

The rest of the sideways propagation is conducted in a similar manner. In our
example, since there is only one subgoalleft, we complete the processing of the
first rule using the rule

p(X,Y,Z) :- fp(I,Y,Zl), down(Z,Zl).

Thus, we complete the evaluation of all rules.

Step 3 In this step, we complete the definition of the various filters by gen­
erating the rules for computing them. This is done by identifying the filtered
predicates which contain the arguments corresponding to the filters. Thus we
obtain the rules

tPl(Xl) :- fupa(I,11).
tP2(Yl) :- fupb(Y,Yl).

This completes the transformation. Program 7 is the final result of the trans­
formation.

tp1(l) .
tp2(2).
p(I,Y,Z)·- tp1(I), tP2(Y), flat(I,Y,Z).
tupa(X,Xl) .- tpl(X), upa(I,11).
fupb(Y,Yl) :- tp2(Y), upb(Y,Yl).
fp(I,Y,Zl) :- fupa(X,11), fupb(Y,Yl), p(Xl,Yl,Zl).
p(X,Y,Z):- tp(X,Y,Zl), down(Z,Zl).
tPl(Xl)'- fupa(X,11).
tp2(Yl):- tupb(Y,Yl).

Program 7.

184

Compared with the magic transformation, which would create a single filter
containing the Cartesian product of the bindings for Xl and Y1 and hence force
the join of a, b, and p to be evaluated as (a x b) 1><1 p, the transformation we
just described has the advantage of keeping independent bindings separate and
hence avoiding unnecessary Cartesian products. However, we would ideally like
to maintain the same effective restriction as is imposed by the magic predicate.
We shall show that in general this may not be possible if we use the basic magic
filters transformation above.

Let us illustrate the problem with the basic method with an example. For
Program I, suppose that the EDB consists of the relations shown in Figure 3.
Using the rules for the filters tp1 and tp2, we see that these filters will contain
the bindings {1, 3, 4, 5, 6} and {2, 7, 8, 9, 10} respectively. It is not hard to see
that the answer to the query

:- p(1,2,Z)?

is the empty set. However, the transformation above generates the tuples
(1,10,11), (6,2,12), (3,9,13), (5,7,14) for the relation p. Clearly, all these
tuples are useless w.r.t. the given query. In fact, it is easy to construct examples
on which the program obtained using the basic transformation produces an
arbitrary number of useless tuples. This feature of the basic transformation
is extremely undesirable. Notice that this is not offset by the fact that the
filters are smaller than the magic predicate. In the next section, we describe
a method which solves this problem. For convenience of future reference, we
refer to the problem above as the problem of column mixing.

Relation upa

X X1
1 3
1 4
3 5
4 6

Relation upb

~ ~

Relation flat

X Y Z
1 10 11
6 2 12
3 9 13
5 7 14

Figure 3: Example EDB relations.

185

5: Magic Filters - The Improved Method

A careful examination ofthe problem of the basic method, illustrated in Section

4, reveals the following. The reason for the lack of effectiveness of the filters
is because when they are applied to the rules, we apply all pairs of possible

bindings for X and Y to the rule. Thus, in addition to applying pairs of bindings

for X and Y that correspond to the same iterationS, we also apply binding pairs
that belong to different iterations. For instance, for the EDB we considered in
Section 4, the pairs (l,2), (3,7), (3, 8), (4,7), etc. are examples of binding pairs
of X and Y that belong to the same iteration. On the other hand, in pairs such
as (l,lO), (6,2), the bindings for X and Y are generated in different iterations.

Since in the filtering method, we maintain independent bindings separately,

the "connection" between pairs of bindings provided by the iteration in which

they are generated, is lost. This is the reason why the basic method is not

effective in cutting down useless tuple generation, in general. We can use a

time stamp, which intuitively corresponds to the iteration in which a binding

is generated, as one of the arguments of filters, to solve the problem above. We

illustrate the idea of time stamp using the example of Section 4. On account
of space limitations, we do not provide an algorithmic description of how time
stamps are generated, in this paper.

TJ: tp1(O,1).
T2: tp2(O,2).
T3: p(X,Y,Z):- tp1(i,X), tp2(i,Y), flat(X,Y,Z).
T4: tupa(X,X1) :- tp1(i,X), upa(l,X1).
TS: tupb(Y,Y1) :- tp2(i,Y), upb(Y,Y1).
T6: tp(X,y,Z1) :- tp1(i,X), tp2(i,Y),

tupa(X,X1), tupb(Y,Y1),
p(X1,Y1,Z1).

T7: p(X,Y,Z):- tp(X,Y,Z1), dovn(Z,Z1).
TS: tp1(next(i),X1) :- tp1(i,X), tupa(X,X1).
T9: tP2(next(i),Y1) :- tp2(i,Y), tupb(Y,Y1).

Program 8.

Program 8 is the rewritten program incorporating time stamps. At the time
the filters are initialised, the corresponding bindings are associated with the

time stamp O. Let us momentarily ignore the issue of how to generate successive

3 Here, iteration refers to the iteration in a bottom-up evaluation of the rules, using a
method lIuch &II semi-naive evaluation.

186

time stamps correctly, and consider the application of filters to the original
rule. Notice that in 1'6 we insist that the bindings for X and Y should have
been generated in the same iteration. Recall that this is exactly the connection
we need to ensure that useless combinations of bindings are not applied to
the variables in rules. Thus, our next concern is how to compute the time
stamps correctly when we update the filter in backward propagation. Notice
that we need a way of generating unique time stamps for each set of bindings
generated in the various filters. At the same time, we also need to synchronise
bindings corresponding to the same iteration of different filters. A natural
way of enforcing the synchronisation between bindings in different filters is to
associate the same time stamp with these bindings. For this purpose, we use a
function next(i), where i is a time stamp, as follows. If i is being considered
during backward propagation for the first time, then next(i) denotes max + 1
where max denotes the current maximum of the number of times backward
propagation has been performed4 • Otherwise, i must have been considered at
least once before. In this case, next(i) denotes the value next(i) that was
generated when i was considered for the first time. We remark that the next
function does not have to be implemented literally as described above. The
description above is only a logical view of the next function.

6: Conclusions

We described a method of magic filters with the objective of combining the
advantages of tight filtering enjoyed by magic sets and with that of small filters
enjoyed by dynamic filtering, without sacrificing the tightness of filtering. Let
us briefly compare the three methods - dynamic filtering, magic sets, and magic
filters, next. First of all, it is very easy to show that the dynamic filtering
method experiences the problem of "column mixing" described in Section 4.
Thus, the effectiveness of dynamic filters can be arbitrarily worse than that of
magic predicates on some programs. On the other hand, the size of a magic
predicate can be several orders of magnitude larger than the size of dynamic
filters and thus computation of magic predicates could take significant time.
Magic filters strike a balance between these two extremes by generating filters
that are smaller than magic predicates and yet achieve the same effectiveness
of restriction as magic predicates. For want of space we have omitted a detailed

4Notice that eYeD within one iteration of evaluation of the rules, backward propagation
may be performed (perhaps corresponc:liq to different filters) Beyeral timel.

187

comparison of the magic filters method with the other methods. In [Yim 91]
we present such a comparison, as well as the implementation details of the
magic filters method. Recently we have developed a special evaluation method
particularly suited for magic filters, which exploits the structure of the rules
generated by the rewriting transformation above in order to optimise query
evaluation. The details are discussed in [Yim 91]. Currently we are working on
extending the method presented here for the class of stratified logic programs.

7: Acknowledgements

The authors wish to thank Raghu Ramakrishnan for stimulating discussion
which helped clarify certain concepts, and led to an improvement of the method.

This research was supported in part by a grant from the Natural Sciences
and Engineering and Research Council of Canada and by a grant from the
Fonds pour la Formation de Chercheurs et l'Aide a la Recherche of Quebec.

188

References

[Bancilhon et a186] Bancilhon, F., Maier, D., Sagiv, Y. and Ullman,
J. D. "Magic sets and other strange ways to im­
plement logic programs," ACM Symp. PODS,
1986, pp. 1-15.

[Beeri & Ramakrishnan 87] Beeri, C. and Ramakrishnan, R. "On the power
of magic," ACM Symp. PODS, 1987, pp. 269-283.

[Berge 73] Berge, C. Graphs and Hypergraphs, North Hol­
land, 1973.

[Bry 89] Bry, F. "Query evaluation in recursive databases:
top-down and bottom-up reconciled," Proc.
1st Int. Conf. Deductive and Object-Oriented
Databases, Japan, 1989, pp. 20-39.

[Kerisit 89] Kerisit, J-M. "A relational approach to logic pro­
gramming: the extended Alexander method,"
Theoretical Computer Science, 69:1(1989), 55-
68.

[Kifer & Lozinskii 86] Kifer, M. and Lozinskii, E. L. "A framework
for an efficient implementation of deductive
databases," Proc. Advanced Database Symp.,
Japan, 1986, pp. 109-116.

[Ramakrishnan 88] Ramakrishnan, R. "Magic templates: a spell­
binding approach logic programs," Proc. ICLP,
1988, pp. 140-159.

[Sagiv 90] Sagiv, Y. "Is there anything better than magic?,"
Proc. North Amer. Conf. Logic Programming,
1990, pp. 235-254.

[Seki 89] Seki, H. "On the power of Alexander templates,"
ACM Symp. PODS, 1989, pp. 150-159.

[Sippu & S-Soininen 88] Sippu, S. and Soisalon-Soininen, E. "An opti­
mization strategy for recursive queries in logic
databases," IEEE Conf. Data Engg., 1988, pp.
470-477.

[Ullman 89] Ullman, J. D. Principles of Database and
Knowledge-Base Systems, vol. II, Computer
Science Press, MD, 1989.

[Vielle 89]

[Yim 91]

189

Vielle, L. "Recursive query processing: the
power of logic," Theoretical Computer Science,
69:1(1989), 1-53.

Yim, C-H. Toward an Efficient Query Prcessor
for a Deductive Database System, M.Sc. The­
sis, Dept. of Computer Science, Concordia Uni­
versity, Montreal, March 1991.

A Simple Prolog Techniques Editor
for Novice Users

Dave Robertson
drGai. ed. ac. uk

Department of Artificial Intelligence,
University of Edinburgh,

80 South Bridge,
Edinburgh, EHllHN.

Abstract

This paper describes a working prototype system which uses descrip­
tions of standard Prolog techniques to provide a basic techniques editing
system, ultimately intended for use by novice programmers. A notation
for representing techniques, based on Definite Clause Grammars, is de­
scribed in the context of previous theoretical work by Kirschenbaum,
Lakhotia and Sterling. Details are supplied of a mechanism for using
these techniques to provide guidance during program construction and
an example is provided of the system in operation. I conclude by sug­
gesting the extensions needed in order to make the prototype useful for
practical applications.

1: Introd uction

Many people have expressed an interest in supplying software tools which will
make Prolog programming easier and/or more efficient. Most of the effort of
implementation seems to have been directed at the debugging phase and there
seem to be very few implementations of systems which provide help with the
initial construction of programs. This seems surprising to me because when I
teach Prolog I spend a lot of time making sure that students have grasped the
basics of writing Prolog code, while the amount of time I spend on debugging
is comparatively modest. The way I normally teach basic Prolog programming
is as follows: I describe certain simple techniques which are generally useful
(e.g. basic deconstruction of a list); I show how these can be applied for
simple examples; and finally I get the students to apply these same techniques
to other examples. This arrangement seems to work but it takes up a great
deal of my time because I have to keep going over examples until each student

191

has understood how the techniques are used. If a computer program could
be written which would be able to guide students in the application of these
techniques to sets of example problems then I would be spared the monotony of
working through the same tired set of examples each year and students would
have easier access to help in their initial attempts to write Prolog code. This
paper describes a first attempt at constructing this sort of program.

2: Representing Basic Methods of
Constructing Prolog Programs

A recent paper by [Kirschenbaum et al 89] seems to present a useful frame­
work for a Prolog techniques tutor. A related technique has been described in
[Plummer 90] which gives details of an implementation but [Kirschenbaum et
a189] provides a more convincing analysis of the problem. Gegg-Harrison, has
produced generalisation hierarchies for some Prolog list processing techniques

([Gegg-Harrison 89]) and has suggested that these could be used in a similar
way to the LISP cliche libraries of the Programmers Apprentice. Although
these papers are interesting from a theoretical point of view, they do not ad­
dress in detail the practical problems of using the idea of techniques to support
program construction.

My experiments have been based on the view of program construction pro­
moted in [Kirschenbaum et al 89]. This may be summarised as follows:

• When constructing a program we start out with a basic plan of the control
flow of the program. This basic plan is referred to as a skeleton.

• We also have available various standard methods for performing useful
tasks, such as passing back results from computations. These are referred
to as techniques.

• A technique may be applied to a skeleton to obtain an extension of the
skeleton.

• Extensions may be composed to produce completed programs.

In this section I shall provide a notation in which skeletons and techniques
may be represented in Prolog. Then, in Section 3, I shall describe how these
may be used as the basis for a simple techniques editor.

192

2.1: Skeletons

Skeletons provide the basic flow of control which will be the starting point for
program development. One of the simpler skeletons would be list traversal,
where a list is deconstrutted by removing head elements until the empty list
is reached. In Prolog-like notation this might be written as follows:

Predlame(0).
Predlame([HIT])

Test1.
Predlame(T) .

Predlame([HIT]) :­
Test2.
Predlame(T) .

Predlame([HIT]) :­
Testl.
Predlame(T) .

where Test 1. .. ,TestN are tests which determine which of the clauses to use
for deconstructing the list. The degenerate case of this skeleton occurs when
there is no need to use any tests to distinguish the different clauses used to
deconstruct the list, in which case we have simply:

Predlame(0).
Predlame ([H I T]) :-Predlame (T) .

The problem is to provide a notation which will allow us the flexibility of
applying the same basic skeleton, parameterised by the particular cases which it
needs to cover, to obtain an instantiation for some particular problem. nCG's
offer a useful mechanism for performing this task.

Agree to represent each goal of a clause as a list with the first element be­
ing the predicate name and subsequent elements being the arguments, in order.
Also agree to represent each clause as a list of goals with the first element being
the head of the clause and subsequent elements being the body of the clause.
A nCG rule for a skeleton is defined using the notation

skeleton(Type. Predlame) -;. Defn

where Type defines the type of skeleton; Predlame gives the predicate name
for the procedure to which the skeleton applies; and Defn will contain a def-

193

inition of a valid sequence of clauses for the skeleton. The Type argument is
used not only to distinguish between different varieties of skeleton but also to

provide parameters used in controlling the instantiation of the skeleton. For
example, the list traversal skeleton mentioned earlier must be parameterised
with the test cases which need to be used in order to distinguish between
the clauses for deconstructing the list so the Type argument in this case is:
traverse ([Test 1, ... , Testl]). The Dca definition for this skeleton then be­
comes:

skeleton(traverse(0) ,PredIame) -+
[[[Predlame, [_IT]], [PredIame,T]],

[[PredIame, 0]]].
skeleton(traverse([CaseIRestCases]),PredIame) -+

traverse~ases(PredIame,[CaseIRestCaaes]).

traverse_cases (Predlame, 0) -+
[[[PredIame, 0]]].

traverse~ases(PredIame, [case([RIT],Test)IRestCases]) -+
[[[PredIame,[RIT]],Test,[PredIame,T]]],
traverse~ases(PredIame, RestCases).

where the first clause for skeleton/4 takes care of the degenerate case where
there are no test cases for differentiating between recursive clauses. The second
clause for skeleton/4 deals with the case where there are some test cases and
it generates the appropriate recursive clauses using traverse~ases/4.

An example of the use of this skeleton would be where we wanted to con­
struct a program named get_evens which collected all the even numbers in
some list of numbers. There are two test cases which distinguish between the
recursive cases of this program: depending on whether the head of the list is
odd or even. Thus the Dca for the traverse skeleton is called as follows:

?- skeleton(traverse([case([R1IT1],even(R1»,
case([H21 T2], \+ even(H2»]),

get_evens, s, 0).

and would return the instantiation of the skeleton as:

[[[get-Bvens,[H1IT1]], even(H1), [get_evens,T1]],
[[get-Bvens,[H2IT2]], \+even(H2), [get_evens,T2]],
[[get-Bvens,O]]]

which corresponds with the Prolog program:

194

get-8vens ([111 T1l) :-
even(11). get-8vens(T1).

get-8vens([B2IT2]) :-
\+ even(12). get-8vens (T2) .

get-8vens(D).

Of course, this isn't the completed program because, although the control
of flow is correct for the get-8vens procedure, there remains the problem of
accumulating and passing back the completed list of even numbers. To solve
this problem we must be able to represent techniques.

2.2: Techniques

A skeleton provides an initial sequence of clauses which forms the basis for
the rest of the program. Techniques must augment these sequences with extra
arguments and subgoals necessary to complete the program. These techniques
should be general, in the sense that they will apply to any sequence of clauses
for which they are valid. It is tempting to construct techniques simply as stan­
dard Prolog procedures which unpack clause sequences and add new elements
as necessary. However, this is unsatisfactory because the techniques are quite
complex to implement directly in Prolog and this makes it tricky to construct
and debug the techniques. What is needed is a more specialised (though not
constraining) notation which is specially designed to support the translation
process, in the same way that the DCG notation is particularly suited to gram­
mar processing.

One way of tackling the translation process is to "unpack" the initial se-
quence of clauses using a standard DCG approach but at each step in the
unpacking to map the element of the initial sequence which is currently be­
ing considered onto a translated version in the augmented sequence. The idea
is that the parsing of the initial sequence controls the generation of the aug­
mented version. Since this involves processing two DCGs "simultaneously" we
need some new notation which will represent the appropriate operations:

• A mapping is denoted by the term Ma-pName :: Body, where Ma-pName
is a Prolog term with 0 or more arguments and Body is a sequence of
operations defined informally as follows:

- The operation Seql~ Seq2, which maps a subsequence ofthe initial

195

list to a subsequence of the new list.

- The operation 5eql*= 5eq2, which maps a subsequence of the ini­

tiallist to an element of the new list.

- A reference to some subsidiary mapping definition .

• A subsequence of a list can be represented as either:

- A list of terminal symbols: [51, ... , 5N]'

- An empty sequence symbol: O.
- A combination of lists of terminal symbols and sequences of proce-

dures:
{PI, ... , PM}.

- A reference to some subsidiary mapping definition, provided that the
subsequence appears on the right hand side of a mapping operator.

As an introduction to the way in which this notation is used, consider the
problem of flattening a list. There are many ways of doing this in Prolog -
the simplest involving the recursive application of the flattening procedure to
sublists and subsequent appending of flattened sublists to the rest of the pro­
cessed list. In terms of techniques this may be thought of as a parse of the
input (nested) list and a mapping of each element of the input list onto a sub­
sequence of the output (flattened) list. The definition for this procedure is:

flatten:: [LI J] =? flatten.
flatten.

flatten :: ([A] • {atom(A)}) =? [A] •
flatten.

flatten :: [] =? [] •

The first clause of this definition states that if the first element of the
current input sequence is a list then that list is mapped to the output sequence
by applying the flatten mapping to it. The second clause states that if the
first element is an atom then it is mapped directly across as the first element
of the output sequence. The third clause states that if the input sequence
contains no elements then the output sequence is also empty.

To turn this notation into computable procedures for constructing map­
pings between lists it is necessary to provide a compilation mechanism which
adds in the necessary difference lists (in a manner analogous to the compilation

196

of DCG rules in standard Prolog). There is little point in boring the reader
with the details of this mechanism. It is sufficient to show the Prolog code
which is produced by compiling the flatten definition above.

flatten(A,B,C,D) :-
'C' (A, [ElF] ,G), flatten([ElF], 0 ,C,B),
flatten(G,B,B,D).

flatten(A,B,C,D) :-
('C'(A,E,F), atom(E», 'C'(C,E,G),
flatten(F,B,G,D).

flatten(A,A,B,B).

This compiled Prolog version of flatten has 4 arguments: the input se­
quence, A; the remainder of the input sequence after parsing, B ; the mapped
sequence, C; and the remainder of the elements in the mapped sequence, D.

The • C • /3 predicate is the standard Prolog predicate for removing terminal
elements from DCGs and is defined as:

• C • ([I I T], I, T).

Since we typically require that there should be no remaining (unparsed) ele­
ments in either the input or mapped sequences, these arguments (B and D in
the example) are normally instantiated to the empty list when the procedure
is called. Thus, to flatten the list [[a, b] , [c, [d]]] using the above procedure
we would give the goal:

I ?-flatten([[a,b],[c,[d]]], 0, I, []).

which would bind I to [a, b, c , d] .

Let us now consider how this mapping mechanism may be used to imple­
ment techniques for Prolog programs. Again, this explanation is easier to un­
derstand in the context of a specific example. Consider the problem of adding
a simple accumulator to a recursive program. For each recursive clause, we
need to add an extra argument to the head and recursive subgoal to pass back
the result and, in addition, we must ensure that the final value obtained when
the recursive clause succeeds is updated with whatever structure we intend to
accumulate. Expressing this using the notation for techniques we obtain:

technique (backJlccumulate, _) ::
[Bead] =>= add..args ([Result]) ,
non.recursive ... eq(Head) ,
([R], {recursive ... ubgoal(Bead,R)}) =>=

add..args([PartialResult]),
o ~ ['$' (update_value (PartialResult ,Result»] .

technique(backJlccumulate, _) ::
[Bead] =>= add..args ([Result]) ,
non.recursive ... eq(Bead) ,
o ~ ['$' (instantiate (Result»] .

197

This technique is named backJlccumulate. Its first mapping definition
deals with the recursive case: adding an extra Result argument to the head
of the clause; passing through some non-recursive sequence; then finding the
recursive subgoal and adding an extra PartialResult argument to it; finally
adding an extra subgoal for obtaining the value of Result from PartialResult.
The second mapping definition deals with the non-recursive case: adding an
extra Result argument to the head of the clause and inserting an extra sub­
goal to instantiate Result for a "base" value. Note that, since we require
a general definition of this form of accumulation, it is not possible to say
precisely how the final value of Result will be obtained. Thus the predi­
cates update_value(PartialResult,Result) and instantiate(Result) do
not refer to particular Prolog procedures but, instead, provide a "flag" that
procedures of this form are required in the code at those points. To distinguish
these flags from object level code they are enclosed within a $/1 predicate.
The instantiation of these procedures is dealt with in Section 2.3. Appendix A
provides definitions of the mappings for non.recursi ve ... eqf5 and add..args/5.

To show how this definition is used, recall the partial definition of get_evens
which was produced by applying the traverse skeleton in Section 2.1. An
accumulator is required in this definition in order to record the even numbers

which are found when deconstructing the list of numbers. we can perform this
addition by applying the backJlccumulate mapping definition to each clause
of get_evens, in which case we obtain the list of sequences:

[[[get-.evens, [BlITl], Resultl],
even(Bl),
[get_evens, Tl, PartialResultl],
'$'(update_value(PartialResultl, Resultl»],

[[get_evens, [B2IT2], Result2],
\+ even(B2) ,
[get_evens, T2, PartialResult2],
'$'(update_value(PartialResult2, Result2»],

[[get-8vens, 0, Result3],
'$' (instantiate(Result3»]]

198

which corresponds with the Prolog program:

get __ vens([BlITl], Resultl) :­
even(Bl) ,
get __ vens(Tl, PartialResultl),
'$'(update_value(PartialResultl. Resultl».

get __ vens([B2IT2]. Result2) :­
\+ even(B2).
get __ vens(T2. PartialResult2).
'$' (update_value(PartialResult2. Result2».

get __ vens(D. ResultS) :-
'$' (instantiate(ResultS».

2.3: Elaborations

The final component of the techniques editing system is a means of elaborating
upon the general procedures flagged with a $ symbol in the partially developed
programs. This is a different sort of activity from that of applying techniques
because techniques are mappings which are applied across all clauses of a pro­
gram, while an elaboration will apply to a single clause. This being so, it is still
possible to implement elaborations using the same mapping procedure that was
used in Section 2.2. A general purpose mapping definition for instantiating $/1
procedures is shown below:

elaboration(inst.JIubproc(Proc. Inst), _) ..
'SEQ' •
['$' (Proc)] => [Inst].
'SEQ' •

where ' SEQ' simply maps a segment of the input list to the output list (see Ap­
pendix A). Of course, all this does is to replace the "flagged" procedure (Proc)
with the pre-supplied instantiation of the procedure (Inst). This leaves the
difficult job of deciding what the code supplied for Inst should be. We return
to this topic in Section 3. In the meantime, it is possible to apply the elabo­
ration mapping to the running example of the get_evens program in order to
obtain a runnable program. Three elaborations are necessary:

1. Flagged subgoal: '$' (update_value(PartialResultl. Resultl»
Elaboration: Resultl = [BlIPartialResultl]

199

2. Flagged 8ubgoal: '.' (update_value (PartialResult2, Result2»
Elaboration: Result2 = PartialResult2

3. Flagged 8ubgoal:. '.' (instantiate (ResultS))
Elaboration: ResultS = 0

This produces the program:

get_evens ([B1IT1], Result1) :­
even(B1),
get-evens(T1, PartialResult1),
Result1 = [B1IPartialResult1].

get_evens([B2IT2], Result2) :­
\+ even(B2) ,
get-evens(T2, PartialResult2),
Result2 = PartialResult2.

get_evens (0, ResultS) :­
ResultS = O.

which can be simplified by removing the explicit unification subgoals to form:

get_evens([B1IT1], [B1IPartialResult1]) :­
even(B1),
get_evens(T1, PartialResult1).

get-evens([B2IT2], PartialResult2) :­
\+ even(B2) ,
get-evens(T2, PartialResult2).

get_evens (0, 0).

In this section I have described a way of constructing simple Prolog pro­
grams, based on notions of skeletons and techniques described in [Kirschen­
baum et aI89]. It is worth noting in passing that their method of application
of techniques is different from the method which I have used. They construct
programs by applying techniques independently to a skeleton, thus obtaining
several program components, and finally merge these components together to
obtain a completed program. I retain a single partial program and successively
apply each technique/elaboration to it to obtain a linear sequence of develop­
ment. Both approaches rely on the limiting assumption that the application of
techniques doesn't affect the flow of control of the program (as dictated by the
skeleton). The next section describes how these mechanisms can be employed
to produce a limited form of automation of the template application process.

200

3: The Interface

The program described in this section is not intended to be a final, polished

piece of software. It is merely a simple prototype, designed to show roughly
how an interface might be constructed around the basic template application
mechanism. Space limitations prevent the inclusion of detailed transcripts of
the interaction between user and editor. For these the reader is referred to
[Robertson 91]. For the purposes of this paper it is sufficient to summarise the
main features of the interface. These are as follows:

• At the start of a session, the user is presented with a choice of predicates
which he/she may want to define. These are obtained from a predefined
library of examples. Each example provides: the name of the predicate;
an ordered list of its arguments with the type of each argument recorded;
and a list of test goals for which the predicate must succeed. For the
append example this information would be:

- Its name is append.

- Its arguments are [0: 1 = list, 0:2 = list, 0:3 = list]. Where 0: 1, 0:2
and 0:3 identify the arguments of the predicate and each argument
is of type list.

- The single test goal is

(append([a.b].[c,d],R), R == [a.b,c.d])

• Once an example has been selected the user must choose a skeleton to
provide the appropriate flow of control. Currently, the range of skeletons
available to the system is small but it is anticipated that larger numbers
of skeletons will be added as the system develops. To provide the system
with a means of narrowing down the selection of appropriate skeletons
each skeleton is provided with a set of preconditions which must be es­
tablished in order for it to be valid for a partiCUlar problem. For example,
the preconditions for a list traversal skeleton are:

- The predicate must have an argument which is of type list.

- The problem must involve the processing of all elements in the list.

- The test cases necessary to distinguish between recursive cases of
the skeleton must be known (see Section 2.1).

201

The first of the above preconditions may be satisfied easily from the initial
predicate specification but the other two preconditions require more s0-

phisticated information. Currently, this information is also stored along
with the initial predicate specification. Thus for the append predicate
the system is prepared with the information that all elements of the list
must be processed and that there is no need to distinguish between dif­
ferent recursive cases. If the system were to be extended it would be
necessary to provide a more sophisticated method for obtaining ancillary
components of the problem description from the user, rather than "pre­
canning" them for each example. This is a similar sort of problem to that
addressed in the EL system ([Robertson et a191]) which provided users
with a way of describing general features of ecological problems and used
these to control the generation of simulation models appropriate to these
problem descriptions.

• Once a skeleton is in place, the definition of the predicate proceeds by
applying a sequence of techniques. At each stage in this process the user
is given a standard display which shows: the current (partial) definition;
the arguments of the predicate which remain unaccounted for; and a
menu of techniques which could be applied to develop the predicate a
stage further. Techniques application is complete when no arguments

remain to be considered.

• The final phase of development consists of applying any elaborations
which are necessary within clauses (see Section 2.3). The display for­
mat for these is similar to that for techniques (above).

• When all the elaborations have taken place, the definition is tested to
determine whether it succeeds with the test goals provided in the initial
example. If it does, then the final program is shown to the user, along
with any simplifications which might be possible (e.g. removal of explicit
unification subgoals). If it doesn't then the user is informed of the failure
and asked to continue.

• It is common for users to apply the wrong skeleton, technique or elab­
oration at one or more phases of predicate definition. To allow them
to recover from these errors they are given the ability to step back to
previous stages in the session and resume construction.

• A further problem is that users may have a rough idea of the sort of
technique/elaboration which they want to apply but may not want to

202

commit to a particular choice. A facility is provided to allow users to
examine the effects which each technique/elaboration would have, if it
was applied to their current partial program.

• If there are a large number of steps in the definition of a predicate it
is easy for users to lose track of what they have done. To allow users
to regain some of this context, a mechanism is provided for replaying (in
chronological order) the sequence of development up to the current stage.

• Since the examples used by the system are quite small, it has been pos­
sible to provide the system with the ability to build any of the exam­
ples automatically, using the same techniques and elaborations which are
available in interactive mode. This facility is useful for users who produce
a partial definition but aren't sure how to complete it, since they can ask
the system to attempt to finish the job.

4: Conclusions and Future Work

Section 2 describes a method for representing Prolog techniques using a nota­
tion based on DCGs. In Section 3 this notation is used to provide a system
which allows the application of techniques by users with little knowledge of
Prolog. However, this prototype is far from being able to provide the level
of guidance necessary to support novice users. Many improvements to the in­
terface could be made but these are subsidiary to more basic work which is
required to extend the functionality of the system. Some of the areas which
require improvement are:

The range of skeletons, techniques and extensions: Only a tiny num­
ber of these are available in the current system. More work is required
to collect a larger number of templates and to organise them into a co­
herent package. A significant amount of work has already been done
by other researchers in classifying techniques (e.g. [Gegg-Harrison 89],
[Kirschenbaum et a189], [Brna et a191]) but this needs to be standard­
ised and implemented within a uniform computational framework.

The range of example programs: At present, the system restricts the user's
choice of programs to a small number of standard examples. The advan­
tage of imposing this restriction is that the system can construct complete

203

programs automatically for these examples and so can complete a pro­
gram if the user gets stuck. lithe user were allowed to provide his/her own
examples then this guarantee would no longer apply. Work is required to
extend the range of initial examples (a comparatively easy task) and to
provide some way of allowing users to specify realistic problems of their
own (in general, an extremely difficult task).

Permitting more complex programs: As it stands, the system can only
cope with definitions of single predicates . It cannot construct a program
which requires two or more interacting predicates. This is a major limita­
tion which needs to be lifted. The main problem would be the increase in
search space which would ensue if sub-procedures were permitted. This
creates a greater requirement for tight controls on the range of techniques
which could be applied (see next item).

Describing the problem which the program must solve: Ancillary infor­
mation is required whenever skeletons, techniques or elaborations are ap­
plied. This information is sometimes readily available by examination
of the structure of the partial program but at other times the informa­
tion has to do with the general nature of the problem which has to be
solved. To select the traverse skeleton for the a-p-pend example it was
necessary for the system to be told that all elements of the list needed
to be processed and that there was no need to distinguish between dif­
ferent recursive cases. Currently, this information is "precanned" in the
system and is hidden from the user. This is highly undesirable because
users must be aware of the conditions under which various techniques are
applied. The architecture which suggests itself is that used in the ECO
project ([Robertson et algI]), where a "high level" problem description
was used to capture knowledge about the problem which had to be solved
and this was used to control generation of the program.

204

Appendix

A: Utility Mapping Definitions

A direct mapping between input and output sequences:
'SEQ' ..

'SEQ' ..
[] => [].

[X] => [X],
'SEQ' .

Accumulation on the way down through a recursion:
t.ehniqu.(aeeumulat., Claus.) ::

[H.ad] =>= add..args([Sotar,Final]),
{d.eonstruet.d..arg(H.ad, Claus., H)},
o :::} ['$' (update_valu.(H, Valu.»],
r.eursion.aeeumulat.(H.ad, [Valu.I Sotar], Final).

t.ehniqu.(aeeumulat., _) ::
[.J =>= add..args([Final ,Final]).

r.eursion.aeeumulat.(H.ad, Sotar, Final) ::
([R], {reeursive..subgoal(H.ad,R)}) =>= add..args([Sotar ,Final]),
non.r.eursiv • ..s.q(H.ad) ,
{!} .

r.eursion.aeeUlllulat.(H.ad, Sotar, Final) ::
([R], {reeursive..subgoal(Head,R)}) =>= add..args([Sotar ,1.llSotar]),
r.eursion.aeeumulat.(H.ad, lellSotar, Final).

r.eursion..aeeumulat.(Head, Sotar, Final) ::
([R], {\+ reeursi ve..subgoal (H.ad, R)}> :::} [R] ,
r.eursion.aeeumulat.(Head, Sotar, Final).

non.r.eursiv • ..seq(Goal) ::
([R], {\+reeursive..subgoal(Goal,R)}) :::} [R],
non.reeursive..seq(Goal) .

non.reeursive..s.q(_) ::
D:::}D.

Mapping of an input list to a list with Args tacked to the end:

add..args(Args) ::
[Funetor] :::} [Funetor],
'SEQ' ,
o :::} Args.

A direct mapping between non-recursive input and output sequences:

non.r.eursiv • ..s.q(Goal) ::
([R], {\+ r.eursiv ubgoal(Goal ,R)}) :::} [R] ,
non.r.eursive..s.q(Goal) .

non.r.eursiv q(..) ..
D:::}D.

205

References

[Brna et al91] Brna, P., Bundy, A., Dodd, T., Eisenstadt, M., Looi,
C.K., Pain, H., Robertson, D., Smith, B. and van
Someren, M. "Prolog programming techniques." Instruc-
tional Science, (in press), 1991.

[Gegg-Harrison 89] Gegg-Harrison, T.S. Basic Prolog schemata. Techni­
cal Report CS-1989-20, Department of Computer Science,
Duke University, September 1989.

[Kirschenbaum et a189] Kirschenbaum, M., Lakhotia, A. and Sterling, L.S.

[plummer 90]

[Robertson 91]

Skeletons and techniques for Prolog programming. Tr
89-170, Case Western Reserve University, 1989.

Plummer, D. "Cliche programming in Prolog." In Pro-
ceedings of the META-90 wor1cshop, Leuven, Belgium,
1990. META-90.

Robertson, D. A simple prolog techniques editor for
novice users. Research paper 523, Department of Artifi­
cial Intelligence, University of Edinburgh, 1991.

[Robertson et a191] Robertson, D., Bundy, A., Muetzelfeldt, R., Haggith, M.
and Uschold, M. Eco-Logic: Logic-Based Approaches
to Ecological Modelling. MIT Press (Logic Programming
Series), 1991.

The Predicate consult/l- A Problem
in Prolog Standardisation

Roger Seowen
rssOseg.npl.co.uk

National Physical Laboratory,
Teddington,
Middlesex,
England.

Abstract
The process of Prolog standardisation has disclosed many unexpected

problems. One area currently under consideration is the definition of
the predicate consult/1 which reads a file and loads the predicates
defined there into the database. Although the definition of consult/1
was initially simple, implementers have extended and changed its
meaning and effect. This paper identifies the requirements for
consult/1 and poses several questions which must be answered in the
standard.

1: Introduction

Many Prolog users are aware that BSI (British Standards Institution) and
more recently ISO (International Organization for Standardization) are in the
process of defining a standard for the programming language Prolog. Many
of these users are also aware that the process has taken several years but
cannot understand how this can be possible.

The working group decided that the standard would be based on
Edinburgh Prolog, but it seemed important that, as far as possible, other
Prolog implementations should also be standard conforming.

I am the convener of the ISO working group and also a project editor
drafting the standard. These notes describe one of problems that has been
discovered, and suggest how it might be solved.

It seems almost self-evident that standard Prolog should define a facility
for programmers to load user-defined predicates into the Prolog database.

In Edinburgh Prolog systems this functionality is provided by the
predicates consult/1 and reconsult/1 which read a file and load the

207

predicates defined there into the Prolog database. As the file is read by these
predicates, commands can be executed, for example to define the precedence
of operators in the terms to be read.

For a long while, it also seemed self-evident to WGl7 (the working group
responsible for defining standard Prolog. The full title of the working group
is "ISO/IEC JTCl SC22 WGl7") that standard Prolog would also contain
these predicates because the standard is being based on Edinburgh Prolog.
Drafts of the standard simply said: "consult(File) is true iff File is a
file that is available for reading. consult(File) reads clauses and directives
from File starting at the beginning of File. When a clause is read it is
asserted after existing clauses for the same predicate. When a directive is
read it is executed immediately."

However it slowly became evident that this definition leaves too much
unsaid because the predicates are not completely defined. They have also
been extended in various ways in modern versions of Edinburgh Prolog. This
paper is based on the result of my response [Scowen 90a] to WGl7's request
for more information.

2: Requirements

The primary purpose of the predicates consult/l and reconsult/l is to
load predicates that are defined in a file into the Prolog data base. But there
are further requirements if standard Prolog is

1. to offer programmers more power;

2. to permit efficient compilers as well as interpreters.

2.1: Distinguish between static and dynamic predicates

In early versions of Edinburgh Prolog, a predicate is either built-in or
user-defined. If the latter, then its clauses can be inspected with clause/2,
listed with listing/l, and altered with assert/l and retract/I. But if
the processor is a compiler or includes access to predicates that are actually
functions or procedures defined in some other language, these operations may
be impossible. The current draft standard [Scowen 90b] recognises that it
may be impossible to change the clauses of some ptedicates by requiring all

208

predicates to be either static or dynamic and stating that assert/! and
retract/! give an error unless the predicate specified in the argument is
dynamic.

The most obvious advantage of allowing static predicates is that predicates
can be compiled more efficiently if it is known that the code will be unchanged
during the program.

Perhaps even more important is that they greatly simplify the production
of safe correct programs. If you prove a property about a static predicate,
then it must remain true throughout the execution of the program; this is
not so if a predicate is dynamic.

2.2: Control side effects

It is also desirable that side effects while loading predicates from one file
should not inadvertently affect the predicates loaded from a second file. A file
containing library predicates must not have unpredictable effects according
to what has already been loaded. And a team of programmers will find their
task more difficult if all of them can change, by accident or by design, all
the predicates being defined.

3: Questions concerning consult/1

The predicates consult/! and reconsult/! are not as simple as the novice

reading the well known book by Clocksin and Mellish [Clocksin & Mellish 84]
might imagine. A definition for standard Prolog will need to answer the
following questions.

3.1: Where does consult/l start?

Does consult/! open the file and start at the beginning? If the file is
already open and part of it has already been read, what then? Does it
still start at the beginning, or at the current position? What if the file has
been updated, but not yet closed, does consult/! read the unaltered or the
updated version?

209

3.2: Where does consult/1 end?

Does consult/l always read the whole file? Or is there some explicit way of
indicating the end of the predicates to be loaded? Must the last clause be
followed by a newline or other layout character?

Is there an indication that consult/l was successful?

3.3: What is a command?

Some systems distinguish two sorts of commands in a file being consulted.
Both sorts are executed immediately, but if

1- goal.

is successful, the substitution is reported to the user's terminal. Whereas

:- goal.

is executed silently, no indication is sent to the user's terminal, and the goal

cannot be resatisfied.

3.4: Can a command be resatisfied?

Is the user given an opportunity to resatisfy a command?

3.5: How much can a command affect consult/1?

A command is often used to start an application. However it is usually
completely arbitrary, and this possibility allows some bizarre possibilities
(that are doubtless considered useful by the inventive and undisciplined), for
example, to alter the data base by asserting or retracting clauses, to delete
files, etc. Can a command affect the file being read, for example can it read
a term from the file, or rewind the file, or instruct the reader to change to a
different file?

210

3.6: Is a directive a built-in predicate or something
special?

In some systems a directive informs the compiler about the predicates being
loaded and is distinguished from a command which is an arbitrary Prolog
goal. So are directives calls of built-in predicates, or are they instructions to
the compiler that will cause an error if used in an arbitrary goal?

3.7: Are directives local or global?

Do directives have a local or global effect? For example, it would seem
reasonable that a directive that is intended to affect consult/1 itself (such
as, listing the predicates that are being loaded, or specifying optimisation or
debugging options) would be local to the file being read and loaded. But
usually they have a global effect, for example the operators created and
altered in an op/3 directive will continue to be recognised and affect the
meaning of terms read later from other files.

3.8: Must clauses for a predicate be contiguous in a
single file?

If clauses for a predicate must be contiguous in a single file, then it will
be possible to detect several programming errors, for example inadvertently
giving two predicates the same functor, loading both the old and new
definitions of a predicate, mis-spelling the name of a predicate.

On the other hand, such a requirement would break some existing code,
and prevent some styles of programming.

3.9: How are static/dynamic predicates distinguished?

If all predicates are classified as either static or dynamic, then how is this
property specified in consult/1?

3.10: Are there declarations?

Some Prolog systems contain declarations which are read as directives and
enable a programmer to specify particular properties of a predicate, for

211

example, whether a predicate is static or dynamic, or saying which arguments
will be instantiated when it is called, or the types of its arguments when it
is called. What possible declarations can be specified?

3.11: What happens after a syntax error?

Prolog programmers are as fallible and human as everyone else. The files
they create and consult will contain errors. What happens? Is a message
printed and the errant clause ignored? Can programmers pose queries after
consulting a file where an error was detected, or must they first correct all
the errors that have been detected? Both views have their adherents. The
impatient programmer says, "Leave it to me, it is more efficient to discover
as many errors as possible and then to correct them all at once". The
methodical programmer says, "Nonsense, you will confuse yourself trying to
take account of known errors, and perhaps cause problems for our customers
because, by ignoring this apparently unimportant error, you made their
programs behave inexplicably."

3.12: Are grammar rules processed?

Usually the predicates consult/1 and reconsult/1 will expand clauses
representing grammar rules before asserting them to the database. A
user-defined predicate term_expansion/2 generalises this facility. Is this
permissible is standard Prolog?

Does consult provide any other form of preprocessing?

3.13: Are there other predicates to load the program
database?

Are there other predicates to load the program database? Or are extra
facilities provided by extending consult/!? For example there might be
special predicates for giving access to modules, or making available compiled
predicates, or predicates that are not defined in Prolog, or predicates that
represent only data.

212

4: Survey

How are the predicates consult/1 and reconsult/1 described in books and
actually implemented?

Note - I know that at least one system has changed the semantics of
consult/1 since I performed this survey. Readers should therefore regard
information here as an historical snapshot, not a description of current Prolog
implementations.

4.1: Clocksin and Mellish

It will be convenient to take the definitions provided by Clocksin and
Mellish [Clocksin It Mellish 84] as the basic definition. Their book describes
Edinburgh Prolog. Their definition is simple in order to explain the
underlying concepts, and they avoid unnecessary complications. consult
starts at the current position of file and reads the rest of the file unless
some command interrupts the process. reconsult is similar but deletes any
pre-existing clauses for a predicate defined in the file.

The termination of the last clause is specified implicitly by the requirements
of read(Term). There is no message that consult/1 ended successfully.

No directives are described, and a "question" (i.e. a command) is
executed silently and is not resatisfiable; it can be any goal and has global
effect.

Clauses for a predicate do not need to be contiguous, or in a single file.
There is no way of indicating that a predicate is dynamic/static.

There are no checks for consistency, error messages, or mode declarations.

4.2: Implementations

Implementations of Edinburgh Prolog have diverged from this simple defini­
tion.

Experience showed that a common and puzzling error is to consult the
same file twice. The C-Prolog manual [pereira et 4184] warns against this
- the user will have two copies of the relevant clauses for each predicate.
In later Prolog implementations such as Quintus Prolog [Quintus 86] and
SICStus [Carlsson It Widen 88], this error is avoided and consult/1 behaves
like reconsult/I.

213

Commands have also diverged. In C-Prolog there are two sorts of
commands: 1- for goals that can be resatisfied, : - for goals that are executed
silently and cannot be resatisfied. In SWI-Prolog [Wielemaker 89] a command
that fails prints a warning. And in BIM Prolog [BIM 90] a compiler directive
starts with : - and affects compilation, whereas a command starts 1- and is
executed only when the file is loaded.

In some systems (e.g. Quintus Prolog, BIM Prolog), predicates are static
by default, but in others (e.g. NIP [Hutchings et al 87]), predicates are

dynamic by default.
Implementations have also provided different compiler directives, for

example multifile/l to indicate that the clauses for the predicate are in
more than one file, discontiguous/l to indicate that the clauses for a
predicate are not necessarily contiguous in a single file, dynamic/l to indicate
that the clauses for the predicate may be changed during the execution of the
program, etc. But the possibilities in each implementation are not the same,
and a directive may not have the same meaning in different implementations.

5: Proposal for the standard

Existing systems vary so widely it is impractical to define something which
is a superset of all the consult predicates which have been implemented.
Instead, it seems best to define the syntax of Prolog files and a simple consult
predicate which can load clauses without problematic side effects.

Such facilities will be adequate for most programmers, and can be
supported without difficulty by many implementers. Note that, as always,
implementers who support the standard are always free to provide additional
facilities when they judge it desirable. Thus some features are left undefined
by the standard so that implementers can generalise their treatment of
consult/l for the benefit of programmers who do not need to write standard
conforming programs. Some of the undefined features include:

1. a directive appearing after some of the clauses;

2. directives which do not have an effect local to the file in which they
appear;

3. a command which is not at the end of the file;

4. the messages output by calling consult/I.

214

Various limitations on the syntax of a file seem desirable because agreement
on the meaning of an arbitrary mixture of directives, clauses and commands
will be difficult if not impossible to achieve.

Directives should appear at the beginning of the file so that it will not
matter whether they affect all clauses of the specified predicate, or only
clauses which occur after the directive. A directive should not be an arbitrary
goal but instead a special term whose functor is limited to a small set of
possibilities. Some should affect the properties of predicates defined in the
file (for example dynamic/1), others the syntactic analysis of the file (for
example op/3). Normally a directive is understood only by consult/1 and
should not be a built-in predicate, but op/3 is an exception.

As in BIM-Prolog, an op/3 directive should apply only to the file that
is being consulted. This will simplify the tasks of programmers who are
working independently to produce files that may be consulted and loaded in
several programs.

A predicate should be static by default, and all its clauses be contiguous
in a single file.

A command should occur only at the end of a file in order to avoid the
problems described above (see clause 3.5). It is executed after the clauses
have been loaded. (Added in proof August 1991: Remember that this topic
is still being discussed by WG 17, and that although the problems described
here have helped the discussion, the solution proposed is not likely to be
adopted in the standard.)

6: Acknowledgements

I am grateful to Nick North (National Physical Laboratory) for carefully
reading a draft of this paper. Errors remain my responsibility.

I am also grateful to the members of WG 17 who persist in asking difficult
questions.

References

[BIM 90]

[Carlsson It Widen 88]

[Clocksin It Mellish 84]

[Hutchings et a187]

[pereira et al 84]

[Quintus 86]

[Scowen 90a]

[Scowen 90b]

[Wielemaker 89]

215

BIM Prolog. Belgian Institute of Management.
Personal communication from Bart Demoen, Jan
1990.

Carlsson, M. and Widen, J. SICStus Prolog
User's Manual (Clauses 1.2, 1.4, 3.1, 3.2, 4.1.1,
4.12, 4.14). Swedish Institute of Computer Science,
Kista, Sweden, 1988.

Clocksin, W. F. and Mellish, C. S. Programming
in Prolog (Clauses 5.4.2, 6.1, 7.13, chapter 9).
Springer Verlag, 2nd edition, Berlin, 1984.

Hutchings, A. M. J. (editor), Bowen, D. L., Byrd,
L., Chung, P. W. H., Pereira, F. C. N., Pereira,
L. M., Rae, R. and Warren, D. H. D., Edinburgh
Prolog (The New Implementation) User's Manual
- version 1.5 (Clauses 1.3, 1.4, 1.5, 1.6, 3.1,
3.18, 3.19, 3.20, 3.22). AI Applications Institute,
University of Edinburgh, 1987.

Pereira, F. (editor), Warren, D. H. D, Bowen,
D., Byrd, L. and Pereira, L. C-Prolog User's
Manual- version 1.4 (Clauses 1.4, 1.5, 5.1.1, 5.13),
Department of Artificial Intelligence, University of
Edinburgh, 1984.

-Quintus Computer Systems. Quintus Prolog User's
Guide, Quintus Prolog Reference M anual- version
6 (Clauses - User manual 3.1, 3.5, 3.3, 3.6, II-2;
Reference manual 4.5.1, 13.1, 13.7, 17-4-1; System­
dependent features manual 6, 7). Quintus Computer
Systems, April 1986.

Scowen, R. S., Consult and reconsult (in WG17
N59, ppl9-30). International Organization for Stan­
dardization and National Physical Laboratory, Ted­
dington, April 1990.

Scowen, R. S., Prolog - Draft for working draft
4.0 (WG17 N64), International Organization for
Standardization and National Physical Laboratory,
Teddington, September 1990.

Wielemaker, J., SWI-Prolog 1.3 Reference Man-
ual, (Clauses 2.4, 3.2, 3.9). Uni1Jersity of Amster-
dam, The Netherlands, 1989.

Author Index

Darlington, J. .. 56
Dichev, C. ... 36
Draxler, C. ... 156
Gaizauskas, R.I. .. 112
Guo, Y... 56
Gupta, A. ... 78
Huntbach, M. .. 23
Kacsuk, P. ... 1
Lakshmanan, V.S. ... 174
Lichtenstein, Y. .. 78
Markov, Z. .. 36
Roast, C... 94
Robertson, D. .. 190
Ross, B.1.. 135
Scowen, R. .. 206
Welham, B. ... 78
Wu,Q. ... 56
Yim, C.H. .. 174

Published in 1990

AI and Cognitive Sclence ''', Dublin City
University, Eire, 14-lS September 1989
A. F. Smeaton and G. McDermott (Eds.)

SpecltleaUon and Verlneatlon of Concurrent
Systems, University of Stirling, Scodand,
6-8 July 1988
C. Rattray (Ed.)

Sentantla for Concurrency, Proceedings of the
International BCS-FACS Workshop, Sponsored
by Logic for IT (S.E.R.C.), University of
Leicester, UK, 23-15 July 1990
M. Z. Kwiatkowska, M. W. Shields and
R. M. Thomas (Eds.)

Functional Programming, Glasgow 1989,
Proceedings of the 1989 Glasgow Workshop,
Fraserburgh, Scotland, 21-23 August 1989
K. Davis and J. Hughes (Eds.)

Persistent Object Systems, Proceedings of the
Third International Workshop, Newcastle,
Australia, 10-13 January 1989
J. Rosenberg and D. Koch (Ed •.)

z User Workshop, Oxford, 1989, Proceedings of
the FOIlrtb Annual Z User Meeting, Oxford,
IS December 1989
J. E. Nicholls (Ed.)

Forma. Methods for Trustworthy Computer
Systems (FM89), Halifax, Canada,
23-27 July 1989
Dan Craigen (Editor) and Karen Sommerskill
(Assistant Editor)

Security and Persistence, Proceedings of the
International Workshop on Computer
Architecture to Support Security and Persistence
of Information, Bremen, West Germany,
8-11 May 1990
John Rosenberg and J. Leslie Keedy (Eds.)

