Skip to main content
Log in

Multiscale Finite Element Analysis of Linear Magnetic Actuators Using Asymptotic Homogenization Method

  • Original Research
  • Published:
Multiscale Science and Engineering Aims and scope Submit manuscript

Abstract

This work presents the multiscale finite element analysis of linear magnetic actuators. Here, the actuators includes unidirectional fiber reinforced magnetic composites as a back-iron core component. The composite is employed in actuators to enhance the magnetic force. However, the direct computation of actuators including heterogeneous composite structures requires high computation cost. To overcome this problem, multiscale computational technique for the analysis of a magnetic actuator is proposed in this work. First, the effective magnetic permeability of the composite is calculated at various fiber volume fractions and orientation angles. For this, the asymptotic homogenization method is applied to the composite unit cell model in microscopic coordinate system. Next, the obtained homogenized effective permeability is utilized for the macroscopic magnetostatic analysis of actuator model. Subsequently, the magnetic force acting on a actuator plunger is calculated using the Maxwell stress tensor method. To validate the accuracy and computational benefit of the proposed multiscale approach, a actuator numerical example is provided. For the accuracy validation, the magnetic force and magnetic field distribution obtained from the proposed multiscale approach are compared with those from the direct calculation. In addition, the computation time consumed for the mutiscale approach and direct calculation is compared to validate the benefit of the proposed analysis process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. E.M. Dede, J. Lee, T. Nomura, Multiphysics simulation: electromechanical system applications and optimization (Springer, New York, 2014)

    Book  MATH  Google Scholar 

  2. H. Shokrollahi, K. Janghorban, Soft magnetic composite materials (SMCs). J. Mater. Process Tech. 189, 1–12 (2007)

    Article  Google Scholar 

  3. C. Liu, J. Zhu, Y. Wang, Y. Guo, G. Lei, X. Liu, Development of a low-cost double rotor axial flux motor with soft magnetic composite and ferrite permanent magnet materials. J. Appl. Phys. 117, 17B507 (2015)

    Article  Google Scholar 

  4. G. Lei, C. Liu, Y. Guo, J. Zhu, Robust multidisciplinary design optimization of PM machines with soft magnetic composite cores for batch production. IEEE Trans. Magn. 52, 8101304 (2016)

    Article  Google Scholar 

  5. L.A. Dobrzański, M. Drak, J. Trzaska, Corrosion resistance of the polymer matrix hard magnetic composite materials Nd-Fe-B. J. Mater. Process. Tech. 165–165, 795–804 (2005)

    Article  Google Scholar 

  6. L.A. Dobrzański, M. Drak, Hard magnetic composite materials Nd-Fe-B with additions of iron and X2CrNiMo-17-12-2 steel. J. Alloys Compd. 449, 88–92 (2008)

    Article  Google Scholar 

  7. B.L. Gray, A review of magnetic composite polymers applied to microfluidic devices. J. Electrochem. Soc. 161, B3173–B3183 (2014)

    Article  Google Scholar 

  8. D. Banerjee, J. Lee, E.M. Dede, H. Iizuka, Kilohertz magnetic field focusing in a pair of metallic periodic-ladder structures. Appl. Phys. Lett. 99, 093501 (2011)

    Article  Google Scholar 

  9. J. Lee, E.M. Dede, D. Banerjee, H. Iizuka, Magnetic force enhancement in a linear actuator by air-gap magnetic field distribution optimization and design. Finite. Elem. Anal. Des. 58, 44–52 (2012)

    Article  Google Scholar 

  10. E.M. Dede, J. Lee, Y. Guo, L.Q. Zhou, M. Zhang, D. Banerjee, Kilohertz magnetic field focusing and force enhancement using a metallic loop array. Appl. Phys. Lett. 101, 023506 (2012)

    Article  Google Scholar 

  11. J. Fish, K. Shek, Multiscale analysis of composite materials and structures. Compos. Sci. Technol. 60, 2547–2556 (2000)

    Article  Google Scholar 

  12. H. Shin, K. Baek, J.-G. Han, M. Cho, Homogenization analysis of polymeric nanocomposites containing nanoparticulate clusters. Compos. Sci. Technol. 138, 217–224 (2017)

    Article  Google Scholar 

  13. R. Xu, C. Bouby, H. Zaharouni, T.B. Zineb, H. Hu, M. Potier-Ferry, 3D modeling of shape memory alloy fiber reinforced composites by multiscale finite element method. Compos. Struct. 200, 408–419 (2018)

    Article  Google Scholar 

  14. J. Köbler, M. Schneider, F. Ospald, H. Andrä, R. Müller, Fiber orientation interpolation for the multiscale analysis of short fiber reinforced composite parts. Comput. Mech. 61, 729–750 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  15. Q. Sun, Z. Meng, G. Zhou, S.-P. Lin, H. Kang, S. Keten, H. Guo, X. Su, Multi-scale computational analysis of unidirectional carbon fiber reinforced polymer composites under various loading conditions. Compos. Struct. 196, 30–43 (2018)

    Article  Google Scholar 

  16. A. Bensoussan, J.-L. Lions, G. Papanicolaou, Asymptotic analysis for periodic structures (AMS Chelsea Publishing, Rhode Island, USA, 2011)

    MATH  Google Scholar 

  17. C. Fietz, Electro-magnetostatic homogenization of bianisotropic metamaterials. J. Opt. Soc. Am. B. 30, 1937–1944 (2013)

    Article  Google Scholar 

  18. T. Nomura, E.M. Dede, J. Lee, S. Yamasaki, Y. Matsumori, A. Kawamoto, N. Kikuchi, General topology optimization method with continuous and discrete orientation design using isoparametric projection. Int. J. Numer. Meth. Eng. 101, 571–605 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. J. Lee, D. Kim, T. Nomura, E.M. Dede, J. Yoo, Topology optimization for continuous and discrete orientation design of functionally graded fiber-reinforced composite structures. Compos. Struct. 201, 217–233 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016 R1D1A1B03931138), and Global University Project (GUP) grant funded by the GIST in 2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaewook Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J. Multiscale Finite Element Analysis of Linear Magnetic Actuators Using Asymptotic Homogenization Method. Multiscale Sci. Eng. 1, 70–75 (2019). https://doi.org/10.1007/s42493-018-00013-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42493-018-00013-x

Keywords

Navigation