Skip to main content

Advertisement

Log in

Artificial Neural Network Model for Atomistic Simulations of \({\rm {Sb/MoS}_{2}}\) van der Waals Heterostructures

  • Original Research
  • Published:
Multiscale Science and Engineering Aims and scope Submit manuscript

Abstract

van der Waals (vdW) heterostructures have drawn significant amount of attentions because of their potential applications in the future electronic devices as well as quantum computing. Modeling the structural properties has been a challenging task due to the combinatory effects of both chemical complexity and spatial limitations of the first principle calculations. In this work, we trained an artificial neural network (ANN) model for atomistic simulations of \({\rm {Sb/MoS}}_{2}\) vdW heterostructures. The ANN model was trained from thousands of atomistic configurations along with energies computed from density functional theory (DFT) calculations. We demonstrated that the ANN model can successfully predict system energy with high fidelity with respect to DFT calculations with much less consumption of computational resources, manifesting that the ANN model is a powerful tool in atomistic simulations of chemically complex systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim, Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 102(30), 10451–3 (2005)

    Article  Google Scholar 

  2. A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6(3), 183–191 (2007)

    Article  Google Scholar 

  3. K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Atomically thin MoS 2: a new direct-gap semiconductor. Phys. Rev. Lett. 105(13), 136805 (2010)

    Article  Google Scholar 

  4. S.Z. Butler, S.M. Hollen, L. Cao, Y. Cui, J.A. Gupta, H.R. Gutiérrez, T.F. Heinz, S.S. Hong, J. Huang, A.F. Ismach, E. Johnston-Halperin, M. Kuno, V.V. Plashnitsa, R.D. Robinson, R.S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M.G. Spencer, M. Terrones, W. Windl, J.E. Goldberger, Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 7(4), 2898–2926 (2013)

    Article  Google Scholar 

  5. K. Zhang, Y. Feng, F. Wang, Z. Yang, J. Wang, Two dimensional hexagonal boron nitride (2D-hBN): synthesis, properties and applications. J. Mater. Chem. C 5(46), 11992–12022 (2017)

    Article  Google Scholar 

  6. A.K. Geim, I.V. Grigorieva, Van der Waals heterostructures. Nature 499(7459), 419–425 (2013)

    Article  Google Scholar 

  7. Y.-C. Lin, L. Ning, N. Perea-Lopez, J. Li, Z. Lin, X. Peng, C.H. Lee, C. Sun, L. Calderin, P.N. Browning, M.S. Bresnehan, M.J. Kim, T.S. Mayer, M. Terrones, J.A. Robinson, Direct synthesis of van der Waals solids. ACS Nano 8(4), 3715–3723 (2014)

    Article  Google Scholar 

  8. K.S. Novoselov, A. Mishchenko, A. Carvalho, A.H. Castro Neto, 2D materials and van der Waals heterostructures. Science N Y 353(6298), aac9439 (2016)

    Article  Google Scholar 

  9. A. Dankert, S.P. Dash, Electrical gate control of spin current in van der Waals heterostructures at room temperature. Nat. Commun. 8, 16093 (2017)

    Article  Google Scholar 

  10. C.-I. Lu, C.J. Butler, J.-K. Huang, Y.-H. Chu, H.-H. Yang, C.-M. Wei, L.-J. Li, M.-T. Lin, Moiré-related in-gap states in a twisted MoS2/graphite heterojunction. npj 2D Mater. Appl. 1(1), 24 (2017)

    Article  Google Scholar 

  11. Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, P. Jarillo-Herrero, Unconventional superconductivity in magic-angle graphene superlattices. Nature 556(7699), 43–50 (2018)

    Article  Google Scholar 

  12. C. Tang, L. Zhong, B. Zhang, H.-F. Wang, Q. Zhang, 3D Mesoporous van der Waals heterostructures for trifunctional energy electrocatalysis. Adv. Mater. 30(5), 1705110 (2018)

    Article  Google Scholar 

  13. R. Decker, Y. Wang, V.W. Brar, W. Regan, H.-Z. Tsai, Q. Wu, W. Gannett, A. Zettl, M.F. Crommie, Local electronic properties of graphene on a BN substrate via scanning tunneling microscopy. Nano Lett. 11(6), 2291–2295 (2011)

    Article  Google Scholar 

  14. J. Xue, J. Sanchez-Yamagishi, D. Bulmash, P. Jacquod, A. Deshpande, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero, B.J. LeRoy, Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride. Nat. Mater. 10(4), 282–285 (2011)

    Article  Google Scholar 

  15. M. Kuwabara, D.R. Clarke, D.A. Smith, Anomalous superperiodicity in scanning tunneling microscope images of graphite. Appl. Phys. Lett. 56(24), 2396–2398 (1990)

    Article  Google Scholar 

  16. E.N. Voloshina, Y.S. Dedkov, S. Torbrügge, A. Thissen, M. Fonin, Graphene on Rh(111): scanning tunneling and atomic force microscopies studies. Appl. Phys. Lett. 100(24), 241606 (2012)

    Article  Google Scholar 

  17. S. Tang, Y. Haomin Wang, A.L. Zhang, H. Xie, X. Liu, L. Liu, T. Li, F. Huang, X. Xie, M. Jiang, Precisely aligned graphene grown on hexagonal boron nitride by catalyst free chemical vapor deposition. Sci. Rep. 3(1), 2666 (2013)

    Article  Google Scholar 

  18. M.M. van Wijk, A. Schuring, M.I. Katsnelson, A. Fasolino, Moiré patterns as a probe of interplanar interactions for graphene on h-BN. Phys. Rev. Lett. 113(13), 135504 (2014)

    Article  Google Scholar 

  19. Z.Y. Zhang, M.S. Si, S.L. Peng, F. Zhang, Y.H. Wang, D.S. Xue, Bandgap engineering in van der Waals heterostructures of blue phosphorene and MoS2: a first principles calculation. J. Solid State Chem. 231, 64–69 (2015)

    Article  Google Scholar 

  20. J.H. Kim, K. Kim, Z. Lee, The Hide-and-Seek of Grain boundaries from Moiré pattern Fringe of two-dimensional graphene. Sci. Rep. 5(1), 12508 (2015)

    Article  Google Scholar 

  21. Y. Hongyi, G.-B. Liu, J. Tang, X. Xiaodong, W. Yao, Moiré excitons: from programmable quantum emitter arrays to spin-orbitcoupled artificial lattices. Sci. Adv. 3(11), e1701696 (2017)

    Article  Google Scholar 

  22. J. Wang, R. Namburu, M. Dubey, A.M. Dongare, Origins of Moiré patterns in CVD-grown MoS2 bilayer structures at the atomic scales. Sci. Rep. 8(1), 9439 (2018)

    Article  Google Scholar 

  23. H. Kumar, L. Dong, V.B. Shenoy, Limits of coherency and strain transfer in flexible 2D van der Waals heterostructures: formation of strain solitons and interlayer debonding. Sci. Rep. 6(1), 21516 (2016)

    Article  Google Scholar 

  24. P. Nicolini, R. Capozza, P. Restuccia, T. Polcar, Structural ordering of molybdenum disulfide studied via reactive molecular dynamics simulations. ACS Appl. Mater. Interfaces 10(10), 8937–8946 (2018)

    Article  Google Scholar 

  25. G. Cybenko, Approximation by superpositions of a sigmoidal function. Math. Control Signal. Syst. 2(4), 303–314 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  26. K. Hornik, Approximation capabilities of multilayer feedforward networks. Neural Netw. 4(2), 251–257 (1991)

    Article  MathSciNet  Google Scholar 

  27. J. Behler, M. Parrinello, Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys. Rev. Lett. 98, 146401 (2007)

    Article  Google Scholar 

  28. J. Behler, Atom-centered symmetry functions for constructing high-dimensional neural network potentials. J. Chem. Phys. 134(7), 074106 (2011)

    Article  Google Scholar 

  29. A. Khorshidi, A.A. Peterson, Amp: A modular approach to machine learning in atomistic simulations. Comput. Phys. Commun. 207, 310–324 (2016)

    Article  Google Scholar 

  30. G. Kresse, J. Hafner, \(<\)i\(>\)Ab initio\(<\)/i\(>\) molecular dynamics for liquid metals. Phys. Rev. B 47(1), 558–561 (1993)

    Article  Google Scholar 

  31. G. Kresse, J. Furthmüller, Efficient iterative schemes for \(<\)i\(>\)ab initio\(<\)/i\(>\) total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16), 11169–11186 (1996)

    Article  Google Scholar 

  32. P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50(24), 17953–17979 (1994)

    Article  Google Scholar 

  33. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996)

    Article  Google Scholar 

  34. S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27(15), 1787–1799 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Academia Sinica Career Development Award, Grant no. 2317-1050100, and Ministry of Science and Technology, Taiwan, Grant no. MOST 105-2112-M-001-009-MY3 for financial support, and the National Center for High-performance Computing for computational support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chun-Wei Pao or Chien-Cheng Chang.

Appendix A: Parameters of Descriptor Functions

Appendix A: Parameters of Descriptor Functions

See Tables 2 and 3 in Appendix.

Table 2 Parameters of \(G^{II}\) descriptors for all elements in the present study
Table 3 Parameters of \(G^{III}\) descriptors for all elements in the present study

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, YX., Chen, HA., Pao, CW. et al. Artificial Neural Network Model for Atomistic Simulations of \({\rm {Sb/MoS}_{2}}\) van der Waals Heterostructures. Multiscale Sci. Eng. 1, 119–129 (2019). https://doi.org/10.1007/s42493-018-00004-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42493-018-00004-y

Keywords

Navigation