Skip to main content
Log in

Control parameters design of spacecraft formation flying via modified biogeography-based optimization

  • Original Paper
  • Published:
Aerospace Systems Aims and scope Submit manuscript

Abstract

For spacecraft formation flying (SFF) missions, effective control of relative motion is a critical issue. This paper investigates the problem of feedback parameters design in the trajectory tracking controller of SFF. To overcome the difficulty in manual parameters adjustment, a modified biogeography-based optimization (M-BBO) algorithm is employed by transforming the parameters tuning into an optimization problem. In the developed M-BBO, the new component is a hybrid operator, where the search mechanism of grasshopper optimization algorithm is integrated into the migration operation of biogeography-based optimization (BBO). It helps M-BBO to achieve a better balance between exploitation and exploration abilities, thereby facilitating the generation of promising candidate solutions. During the optimization process, the performance indicator is a linear weighted function that considers the tracking error and fuel consumption of the SFF controller. Simulation results show that the parameters obtained via M-BBO ensure accurate control at low cost, and comparative experiments with other versions of BBO are conducted to prove M-BBO’s merit in terms of convergence performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Sobiesiak LA, Damaren CJ (2015) Impulsive spacecraft formation maneuvers with optimal firing times. J Guid Control Dyn 38(10):1994–1999

    Article  Google Scholar 

  2. Wang J, Zhang J, Cao X (2012) Optimal satellite formation reconfiguration strategy based on relative orbital elements. Acta Astronaut 76(76):99–114

    Article  Google Scholar 

  3. Zhang C, Wang J, Sun R et al (2018) Multi-spacecraft attitude cooperative control using model-based event-triggered methodology. Adv Space Res 62:2620–2630

    Article  Google Scholar 

  4. Kristiansen R, Nicklasson PJ (2009) Spacecraft formation flying: a review and new results on state feedback control. Acta Astronaut 65(11–12):1537–1552

    Article  Google Scholar 

  5. Lim Y, Jung Y, Bang H (2018) Robust model predictive control for satellite formation keeping with eccentricity/inclination vector separation. Adv Space Res 61(10):2661–2672

    Article  Google Scholar 

  6. Sun R, Wang J, Zhang D et al (2017) Roto-translational spacecraft formation control using aerodynamic forces. J Guid Control Dyn 40(10):2556–2568

    Article  Google Scholar 

  7. Yang Z, Duan H, Fan Y et al (2018) Automatic carrier landing system multilayer parameter design based on Cauchy mutation pigeon-inspired optimization. Aerosp Sci Technol 79:518–530

    Article  Google Scholar 

  8. Steinberg ML, Page AB (1999) Nonlinear adaptive flight control with genetic algorithm design optimization. Int J Robust Nonlinear Control 9(14):1097–1115

    Article  Google Scholar 

  9. Juang JG, Chiou HK, Chien LH (2008) Analysis and comparison of aircraft landing control using recurrent neural networks and genetic algorithms approaches. Neurocomputing 71(16–18):3224–3238

    Article  Google Scholar 

  10. Lu J, Yang C, Peng B et al (2014) Self-tuning PID control scheme with swarm intelligence based on support vector machine. In: IEEE international conference on mechatronics and automation. Tianjin, China, pp 1554–1558

  11. Deng Y, Duan H (2016) Control parameter design for automatic carrier landing system via pigeon-inspired optimization. Nonlinear Dyn 85(1):97–106

    Article  MathSciNet  Google Scholar 

  12. Soyinka OK, Duan H (2017) Satellite formation keeping via chaotic artificial bee colony. Aircr Eng Aerosp Technol 89(2):246–256

    Article  Google Scholar 

  13. Simon D (2008) Biogeography-based optimization. IEEE Trans Evol Comput 12(6):702–713

    Article  Google Scholar 

  14. Rahmati SHA, Zandieh M (2012) A new biogeography-based optimization (BBO) algorithm for the flexible job shop scheduling problem. Int J Adv Manuf Technol 58(9–12):1115–1129

    Article  Google Scholar 

  15. Gong W, Cai Z, Ling CX (2011) DE/BBO: a hybrid differential evolution with biogeography-based optimization for global numerical optimization. Soft Comput 15(4):645–665

    Article  Google Scholar 

  16. Feng Q, Liu S, Zhang J et al (2014) Biogeography-based optimization with improved migration operator and self-adaptive clear duplicate operator. Appl Intell 41(2):563–581

    Article  Google Scholar 

  17. Zhang B, Zhang M, Zheng Y (2014) A hybrid biogeography-based optimization and fireworks algorithm. In: IEEE congress on evolutionary computation. Beijing, China, pp 3200–3206

  18. Saremi S, Mirjalili S, Lewis A (2017) Grasshopper optimisation algorithm: theory and application. Adv Eng Softw 105:30–47

    Article  Google Scholar 

  19. Imani A, Bahrami M (2013) Optimal sliding mode control for spacecraft formation flying in eccentric orbits. Proc Inst Mech Eng Part I J Syst Control Eng 227(5):474–481

    Article  Google Scholar 

  20. Zhang Y (2002) Study on dynamics and control technology of satellite formation flying. Ph.D. dissertation, National University Defense Technology

  21. Mukherjee R, Chen D (1993) Asymptotic stability theorem for autonomous systems. J Guid Control Dyn 16(5):961–963

    Article  Google Scholar 

  22. Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning. Addison-Wesley, Boston

    MATH  Google Scholar 

  23. Ma H (2010) An analysis of the equilibrium of migration models for biogeography-based optimization. Inf Sci 180(18):3444–3464

    Article  Google Scholar 

  24. Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1(1):67–82

    Article  Google Scholar 

  25. Ma H, Simon D (2011) Blended biogeography-based optimization for constrained optimization. Eng Appl Artif Intell 24(3):517–525

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaowei Shao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, T., Zhang, D. & Shao, X. Control parameters design of spacecraft formation flying via modified biogeography-based optimization. AS 3, 1–8 (2020). https://doi.org/10.1007/s42401-019-00037-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42401-019-00037-7

Keywords

Navigation