Skip to main content
Log in

Ordered Rate Constitutive Theories for Non-classical Thermoviscoelastic Solids with Dissipation and Memory Incorporating Internal Rotations

  • Original Article
  • Published:
Polytechnica Aims and scope Submit manuscript

Abstract

This paper presents constitutive theories for non-classical thermoviscoelastic solids with dissipation and memory using thermodynamic framework based on entirety of the displacement gradient tensor. Thus, the conservation and the balance laws used in this work incorporate symmetric as well as antisymmetric parts of the displacement gradient tensor. In this paper, we only consider small deformation small strain; hence, the constitutive theories are basis independent. The constitutive theories are derived in the presence as well as in the absence of balance of moment of moments balance law. It is shown that the energy storage, dissipation mechanism, and the fading memory in the non-classical thermoviscoelastic solids are due to strain rates, rotation rates, stress tensor, moment tensor, and their rates. Constitutive theories are derived using the conditions resulting from the entropy inequality in conjunction with the representation theorem. The constitutive theories derived using integrity are followed by simplified constitutive theories. Material coefficients are derived and discussed for both cases. Constitutive models parallel to non-classical Maxwell, Oldroyd-B, and Giesekus models for thermoviscoelastic fluids are derived and shown to be a subset of a more generalized simplified constitutive theory presented in the paper. Retardation moduli are derived for stress tensor as well as moment tensor and are compared with those in classical continuum theories for similar solids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Addessi D, De Bellis ML, Sacco E (2013) Micromechanical analysis of heterogeneous materials subjected to overall Cosserat strains. Mech Res Commun 54:27–34

    Article  Google Scholar 

  • Aero EL, Kuvshinskii EV (1961) Fundamental equations of the theory of elastic media with rotationally interacting particles. Sov Phys Solid State 2:1272–1281

    MathSciNet  Google Scholar 

  • Alonso-Marroquín F (2011) Static equations of the Cosserat continuum derived from intra-granular stresses. Granul Matter 13:189–196

    Article  Google Scholar 

  • Bird RB, Armstrong RC, Hassager O (1987) Dynamics of polymeric liquids, vol 1, fluid mechanics, 2nd edn. Wiley, New York

    Google Scholar 

  • Boehler JP (1977) On irreducible representations for isotropic scalar functions. J Appl Math Mech / Zeitschrift für Angewandte Mathematik und Mechanik 57:323–327

    MathSciNet  MATH  Google Scholar 

  • Brand M, Rubin MB (2007) A constrained theory of a Cosserat point for the numerical solution of dynamic problems of non-linear elastic rods with rigid cross-sections. Int J Non Linear Mech 42:216–232

    Article  Google Scholar 

  • Cao DQ, Song MT, Tucker RW, Zhu WD, Liu DS, Huang WH (2013) Dynamic equations of thermoelastic Cosserat rods. Commun Nonlinear Sci Numer Simul 18:1880–1887

    Article  MathSciNet  MATH  Google Scholar 

  • Cao DQ, Tucker RW (2008) Nonlinear dynamics of elastic rods using the Cosserat theory: modelling and simulation. Int J Solids Struct 45:460–477

    Article  MATH  Google Scholar 

  • Chiriţă S, Ghiba ID (2012) Rayleigh waves in Cosserat elastic materials. Int J Eng Sci 54:117–127

    Article  MathSciNet  MATH  Google Scholar 

  • Cialdea A, Dolce E, Malaspina A, Nanni V (2013) On an integral equation of the first kind arising in the theory of Cosserat. Int J Math 24(5):21

  • Cosserat E, Cosserat F (1909) Théorie des corps déformables. Hermann, Paris

    MATH  Google Scholar 

  • Del Piero G (2014) A rational approach to Cosserat continua, with application to plate and beam theories. Mech Res Commun 58:97–104

    Article  Google Scholar 

  • Eringen AC (1962) Nonlinear theory of continuous media. McGraw-Hill

  • Eringen AC (1964a) Simple microfluids. Int J Eng Sci 2(2):205–217

    Article  MathSciNet  MATH  Google Scholar 

  • Eringen AC (1964b) Mechanics of micromorphic materials. In: Gortler H (ed) Proc 11th Intern Congress Appl Mech, pp 131–138

  • Eringen AC (1967) Mechanics of continua. Wiley, New York

    MATH  Google Scholar 

  • Eringen AC, Suhubi ES (1964a) Nonlinear theory of simple micro-elastic solids – I. Int J Eng Sci 2(2):189–203

    Article  MathSciNet  MATH  Google Scholar 

  • Eringen AC, Suhubi ES (1964b) Nonlinear theory of simple micro-elastic solids – II. Int J Eng Sci 2(2):389–404

    MATH  Google Scholar 

  • Genovese D (2014) A two-director Cosserat rod model using unconstrained quaternions. Eur J Mech A Solids 43:44–57

    Article  MathSciNet  MATH  Google Scholar 

  • Green AE, Rivlin RS (1964) Multipolar continuum mechanics. Arch Ration Mech Anal 17(2):113–147

    Article  MathSciNet  MATH  Google Scholar 

  • Grioli G (1960) Elasticità asimmetrica. Annali di Matematica Pura ed Applicata 50(1):389–417

    Article  MathSciNet  MATH  Google Scholar 

  • Günther W (1958) Zur Statik und Kinematik des Cosseratschen Kontinuums. Abhandl Braunschweig Wiss Ges 10:195–213

    MATH  Google Scholar 

  • Huang W, Sloan SW, Sheng D (2014) Analysis of plane couette shear test of granular media in a Cosserat continuum approach. Mech Mater 69:106–115

    Article  Google Scholar 

  • Ieşan D (2011) Deformation of porous Cosserat elastic bars. Int J Solids Struct 48:573–583

    Article  MATH  Google Scholar 

  • Jung P, Leyendecker S, Linn J, Ortiz M (2010) A discrete mechanics approach to the Cosserat rod theory—part 1: static equilibria. Int J Numer Methods Eng 85:31–60

    Article  MathSciNet  MATH  Google Scholar 

  • Koiter WT (1964) Couple stresses in the theory of elasticity, I and II. Proceedings Series B, Koninklijke Nederlandse Akademie van Wetenschappen 67:17–44

    MathSciNet  MATH  Google Scholar 

  • Liu Q (2013) Hill’s lemma for the average-field theory of Cosserat continuum. Acta Mechanica 224:851–866

    Article  MathSciNet  MATH  Google Scholar 

  • Mindlin RD (1964) Micro-structure in linear elasticity. Arch Ration Mech Anal 16:51–78

    Article  MathSciNet  MATH  Google Scholar 

  • Mindlin RD (1965) Stress functions for a Cosserat continuum. Int J Solids Struct 1:265–271

    Article  Google Scholar 

  • Mindlin RD, Tiersten HF (1962) Effects of couple-stresses in linear elasticity. Arch Ration Mech Anal 11(1):415–448

    Article  MathSciNet  MATH  Google Scholar 

  • Nikabadze MU (2011) Relation between the stress and couple-stress tensors in the microcontinuum theory of elasticity. Mosc Univ Mech Bull 66(6):141–143

    Article  MATH  MathSciNet  Google Scholar 

  • Prager W (1945) Strain hardening under combined stresses. J Appl Phys 16:837–840

    Article  MathSciNet  Google Scholar 

  • Reiner M (1945) A mathematical theory of dilatancy. Am J Math 67:350–362

    Article  MathSciNet  MATH  Google Scholar 

  • Riahi A, Curran JH (2009) Full 3D finite element Cosserat formulation with application in layered structures. Appl Math Model 33:3450–3464

    Article  MathSciNet  MATH  Google Scholar 

  • Rivlin RS (1955) Further remarks on the stress-deformation relations for isotropic materials. Journal of Rational Mechanics and Analysis 4:681–702

    MathSciNet  MATH  Google Scholar 

  • Rivlin RS, Ericksen JL (1955) Stress-deformation relations for isotropic materials. Journal of Rational Mechanics and Analysis 4:323–425

    MathSciNet  MATH  Google Scholar 

  • Sansour C (1998) A unified concept of elastic viscoplastic Cosserat and micromorphic continua. J Phys IV France 8:341–348

    Article  Google Scholar 

  • Sansour C, Skatulla S (2009) A strain gradient generalized continuum approach for modelling elastic scale effects. Comput Methods Appl Mech Eng 198:1401–1412

    Article  MATH  Google Scholar 

  • Sansour C, Skatulla S, Zbib H (2010) A formulation for the micromorphic continuum at finite inelastic strains. Int J Solids Struct 47:1546–1554

    Article  MATH  Google Scholar 

  • Schäfer H (1962) Versuch einer Elastizitatstheorië des Zweidimensionalen Ebenen Cosserat-Kontinuums. Miszellaneen der Angewandten Mechanik, pp 277–292

  • Segerstad PH, Toll S, Larsson R (2008) A micropolar theory for the finite elasticity of open-cell cellular solids. Proceedings of the Royal Society A 465:843–865

    Article  MathSciNet  MATH  Google Scholar 

  • Skatull S, Sansour C (2013) A formulation of a Cosserat-like continuum with multiple scale effects. Comput Mater Sci 67:113–122

    Article  Google Scholar 

  • Smith G (1970) On a fundamental error in two papers of C.C. Wang, ‘on representations for isotropic functions, Part I and Part II’. Arch Ration Mech Anal 36:161–165

    Article  Google Scholar 

  • Smith G (1971) On isotropic functions of symmetric tensors, skew-symmetric tensors and vectors. Int J Eng Sci 9:899–916

    Article  MathSciNet  MATH  Google Scholar 

  • Spencer AJM (1971) Theory of invariants. Chapter 3 ‘Treatise on Continuum Physics, I’ Edited by A. C. Eringen Academic Press

  • Spencer AJM, Rivlin R (1959) The theory of matrix polynomials and its application to the mechanics of isotropic continua. Arch Ration Mech Anal 2:309–336

    Article  MathSciNet  MATH  Google Scholar 

  • Spencer AJM, Rivlin RS (1960) Further results in the theory of matrix polynomials. Arch Ration Mech Anal 4:214–230

    Article  MathSciNet  MATH  Google Scholar 

  • Srinivasa AR, Reddy JN (2013) A model for a constrained, finitely deforming, elastic solid with rotation gradient dependent strain energy, and its specialization to von Kármán plates and beams. J Mech Phys Solids 61(3):873–885

    Article  MathSciNet  Google Scholar 

  • Steinmann P (1994) A micropolar theory of finite deformation and finite rotation multiplicative elastoplasticity. Int J Solids Struct 31(8):1063–1084

    Article  MathSciNet  MATH  Google Scholar 

  • Surana KS (2015) Advanced mechanics of continua. CRC/Taylor and Francis, Boca Raton

    MATH  Google Scholar 

  • Surana KS, Joy AD, Reddy JN (2016a) A non-classical internal polar continuum theory for finite deformation and finite strain in solids. International Journal of Pure and Applied Mathematics 4:59–97

    Google Scholar 

  • Surana KS, Joy AD, Reddy JN (2016b) A non-classical internal polar continuum theory for finite deformation of solids using first Piola-Kirchhoff stress tensor. Journal of Pure and Applied Mathematics: Advances and Applications 16(1):1–41

    Google Scholar 

  • Surana KS, Joy AD, Reddy JN (2017a) Non-classical continuum theory and the constitutive theories for thermoviscoelastic solids without memory incorporating internal and Cosserat rotations. Journal of Applied Mathematics and Mechanics (ZAMM), (submitted)

  • Surana KS, Joy AD, Reddy JN (2017b) A non-classical continuum theory for fluids incorporating internal and Cosserat rotation rates. Continuum Mechanics and Thermodynamics, (In press)

  • Surana KS, Joy AD, Reddy JN (2017c) A non-classical continuum theory for solids incorporating internal rotations and rotations of Cosserat theories. Contin Mech Thermodyn 19:665–697

    Article  MathSciNet  MATH  Google Scholar 

  • Surana KS, Long SW, Reddy JN (2016c) Rate constitutive theories of orders n and 1 n for internal polar non-classical thermofluids without memory. Applied Mathematics 7(16):2033–2077

    Article  Google Scholar 

  • Surana KS, Long SW, Reddy JN (2017d) Necessity of balance of moments of moments balance law in non-classical continuum theories for fluent continua. Acta Mechanica (submitted)

  • Surana KS, Long SW, Reddy JN (2017e) Ordered rate constitutive theories for non-classical thermoviscoelastic fluids with internal rotation rate continuum mechanics and thermodynamics (to be submitted)

  • Surana KS, Mohammadi F, Reddy JN, Dalkilic AS (2016d) Ordered rate constitutive theories for non-classical internal polar thermoviscoelastic solids without memory. International Journal of Mathematics, Science, and Engineering Applications 10(2):99–131

    Google Scholar 

  • Surana KS, Moody TC, Reddy JN (2014a) Ordered rate constitutive theories in lagrangian description for thermoviscoelastic solids with memory. Acta Mechanica 226(1):157–178

    Article  MathSciNet  MATH  Google Scholar 

  • Surana KS, Nunez D, Reddy JN, Romkes A (2012) Rate constitutive theory for ordered thermoelastic solids. Annals of Solid and Structural Mechanics 3:27–54

    Article  Google Scholar 

  • Surana KS, Nunez D, Reddy JN, Romkes A (2014b) Rate constitutive theory for ordered thermoviscoelastic fluids polymers. Contin Mech Thermodyn 26(2):143–181

    Article  MathSciNet  MATH  Google Scholar 

  • Surana KS, Powell MJ, Reddy JN (2015a) Constitutive theories for internal polar thermoelastic solid continua. Journal of Pure and Applied Mathematics: Advances and Applications 14(2):89–150

    Google Scholar 

  • Surana KS, Powell MJ, Reddy JN (2015b) A more complete thermodynamic framework for fluent continua. Journal of Thermal Engineering 1(1):14–30

    Google Scholar 

  • Surana KS, Powell MJ, Reddy JN (2015c) A more complete thermodynamic framework for solid continua. Journal of Thermal Engineering 1(1):1–13

    Article  Google Scholar 

  • Surana KS, Powell MJ, Reddy JN (2015d) Ordered rate constitutive theories for internal polar thermofluids. International Journal of Mathematics, Science, and Engineering Applications 9(3):51–116

    Google Scholar 

  • Surana KS, Powell MJ, Reddy JN (2015e) A polar continuum theory for fluent continua. International Journal of Engineering Research and Industrial Applications 8(2):107–146

    Google Scholar 

  • Surana KS, Reddy JN, Nunez D (2014c) Ordered rate constitutive theories for thermoviscoelastic solids without memory in lagrangian description using Gibbs potential. Contin Mech Thermodyn 27(3):409–431

    Article  MathSciNet  MATH  Google Scholar 

  • Surana KS, Reddy JN, Nunez D, Powell MJ (2015f) A polar continuum theory for solid continua. International Journal of Engineering Research and Industrial Applications 8(2):77–106

    Google Scholar 

  • Surana KS, Shanbhag RS, Reddy JN (2017f) Finite element processes based on GM/WF in non-classical solid mechanics. American Journal of Computational Mathematics 7(3):321–349

    Article  Google Scholar 

  • Surana KS, Shanbhag RS, Reddy JN (2017g) Necessity of balance of moments of moments balance law in non-classical continuum theories for solid continua. Meccanica (submitted)

  • Todd JA (1948) Ternary quadratic types. Philosophical Transactions of the Royal Society of London, Series A: Mathematical and Physical Sciences 241:399–456

    Article  MathSciNet  MATH  Google Scholar 

  • Toupin RA (1962) Elastic materials with couple-stresses. Arch Ration Mech Anal 11(1):385–414

    Article  MathSciNet  MATH  Google Scholar 

  • Truesdell CA, Toupin RA (1960) The classical field theories of mechanics. In: Flügge S (ed) Handbuch der Physik, vol 3. Springer, Berlin

  • Varygina MP, Sadovskaya OV, Sadovskii VM (2010) Resonant properties of moment Cosserat continuum. J Appl Mech Tech Phys 51(3):405–413

    Article  MATH  Google Scholar 

  • Voigt W (1887) Theoretische Studien über die Wissenschaften zu Elastizitätsverhältnisse der Krystalle. Abhandl Ges Göttingen, 4

  • Voigt W (1894) Über Medien ohne innere Kräfte und eine durch sie gelieferte mechanische Deutung der Maxwell-Hertzschen Gleichungen. Göttingen Abhandl, 72–79

  • Wang CC (1969) On representations for isotropic functions, Part I. Arch Ration Mech Anal 33:249

    Article  Google Scholar 

  • Wang CC (1969) On representations for isotropic functions, Part II. Archive for Rational Mechanics and Analysis 33:268

    Article  MathSciNet  Google Scholar 

  • Wang CC (1970) A new representation theorem for isotropic functions, Part I and Part II. Arch Ration Mech Anal 36:166–223

    Article  Google Scholar 

  • Wang CC (1971) Corrigendum to representations for isotropic functions. Arch Ration Mech Anal 43:392–395

    Article  Google Scholar 

  • Yang F, Chong ACM, Lam DCC, Tong P (2002) Couple stress based strain gradient theory for elasticity. Int J Solids Struct 39:2731–2743

    Article  MATH  Google Scholar 

  • Zheng Q (1993) On the representations for isotropic vector-valued, symmetric tensor-valued and skew-symmetric tensor-valued functions. Int J Eng Sci 31:1013–1024

    Article  MathSciNet  MATH  Google Scholar 

  • Zheng Q (1993) On transversely isotropic, orthotropic and relatively isotropic functions of symmetric tensors, skew-symmetric tensors, and vectors. Int J Eng Sci 31:1399–1453

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The first and the third authors are grateful for the support provided by their endowed professorships during the course of this research. Many facilities provided by the Department of mechanical engineering of the University of Kansas are gratefully acknowledged.

Funding

The second author received financial support from the Mechanical Engineering Department of the University of Kansas is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Surana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Surana, K.S., Mysore, D. & Reddy, J.N. Ordered Rate Constitutive Theories for Non-classical Thermoviscoelastic Solids with Dissipation and Memory Incorporating Internal Rotations. Polytechnica 1, 19–35 (2018). https://doi.org/10.1007/s41050-018-0004-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41050-018-0004-2

Keywords

Navigation