Skip to main content
Log in

Incremental Value of 3-D Transesophageal Echocardiographic Imaging of the Mitral Valve

  • Valvular Heart Disease (V Nkomo, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Transesophageal echocardiography provides excellent visualization of the posteriorly located mitral valve. Over the last decade, 3-dimensional transesophageal echocardiography (3D TEE) has emerged as an exciting imaging modality, particularly of the mitral valve. The current generation matrix array technology allows the operator to perform 2D and 3D imaging with a single transducer. 3D TEE affords the unique ability to view the mitral valve and its surrounding structures “en face” in real time (RT), and provide contextual anatomical guidance during surgical and transcatheter interventions. Additionally, offline quantification has made significant contributions to our mechanistic understanding of the normal and diseased mitral valve, and alterations induced by therapeutic intervention such as surgical repair. This review will address recent advances in the incremental role of 3D TEE in mitral valve imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

2D:

2-dimensional

3D:

3-dimensional

DMVD:

Degenerative mitral valve disease

Echo:

Echocardiography

FMR:

Functional mitral regurgitation

IMR:

Ischemic mitral regurgitation

MR:

Mitral regurgitation

MS:

Mitral stenosis

MV:

Mitral valve

MVP:

Mitral valve prolapse

MAIVF:

Mitral-aortic inter valvular fibrosa

PVR:

Paravalvular regurgitation

TEE:

Transesophageal echocardiography

RT3D TEE:

Real time 3-dimensional transesophageal

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Silbiger JJ. Anatomy, mechanics, and pathophysiology of the mitral annulus. Am Heart J. 2012;164:163–76.

    Article  PubMed  Google Scholar 

  2. •• Lang RM, Badano LP, Tsang W, et al. EAE/ASE recommendations for image acquisition and display using three-dimensional echocardiography. J Am Soc Echocardiogr. 2012;25:3–46. This is the recent document for practicle principles of 3D echo and current role in echocardiography.

    Article  PubMed  Google Scholar 

  3. Salcedo EE, Quaife RA, Seres T, Carroll JD. A framework for systematic characterization of the mitral valve by real-time three-dimensional transesophageal echocardiography. J Am Soc Echocardiogr. 2009;22:1087–99.

    Article  PubMed  Google Scholar 

  4. Pepi M, Tamborini G, Maltagliati A, et al. Head-to-head comparison of two- and three-dimensional transthoracic and transesophageal echocardiography in the localization of mitral valve prolapse. J Am Coll Cardiol. 2006;48:2524–30.

    Article  PubMed  Google Scholar 

  5. Grewal J, Mankad S, Freeman WK, et al. Real-time three-dimensional transesophageal echocardiography in the intraoperative assessment of mitral valve disease. J Am Soc Echocardiogr. 2009;22:34–41.

    Article  PubMed  Google Scholar 

  6. Ben Zekry S, Nagueh SF, Little SH, et al. Comparative accuracy of two- and three-dimensional transthoracic and transesophageal echocardiography in identifying mitral valve pathology in patients undergoing mitral valve repair: initial observations. J Am Soc Echocardiogr. 2011;24:1079–85.

    Article  PubMed  Google Scholar 

  7. Hien MD, Rauch H, Lichtenberg A, et al. Real-time three-dimensional transesophageal echocardiography: improvements in intraoperative mitral valve imaging. Anesth Analg. 2013;116:287–95.

    Article  PubMed  Google Scholar 

  8. • Hien MD, Grossgasteiger M, Rauch H, Weymann A, Bekeredjian R, Rosendal C. Experts and beginners benefit from three-dimensional echocardiography: a multicenter study on the assessment of mitral valve prolapse. J Am Soc Echocardiogr. 2013;26(8):828–34. An interesting study case of interpretation in 3D TEE of the mitral valve.

  9. Levine RA, Handschumacher MD, Sanfilippo AJ, et al. Three-dimensional echocardiographic reconstruction of the mitral valve, with implications for the diagnosis of mitral valve prolapse. Circulation. 1989;80:589–98.

    Article  CAS  PubMed  Google Scholar 

  10. Grewal J, Suri R, Mankad S, et al. Mitral annular dynamics in myxomatous valve disease: new insights with real-time 3-dimensional echocardiography. Circulation. 2010;121:1423–31.

    Article  PubMed  Google Scholar 

  11. •• Chandra S, Salgo IS, Sugeng L, et al. Characterization of degenerative mitral valve disease using morphologic analysis of real-time three-dimensional echocardiographic images: objective insight into complexity and planning of mitral valve repair. Circ Cardiovasc Imaging. 2011;4:24–32. This study quantifies the association between morphological differences and surgical complexity in the spectrum of degenerative mitral valve disease.

    Article  PubMed  Google Scholar 

  12. Maffessanti F, Marsan NA, Tamborini G, et al. Quantitative analysis of mitral valve apparatus in mitral valve prolapse before and after annuloplasty: a three-dimensional intraoperative transesophageal study. J Am Soc Echocardiogr. 2011;24:405–13.

    Article  PubMed  Google Scholar 

  13. •• Lee AP, Hsiung MC, Salgo IS, et al. Quantitative analysis of mitral valve morphology in mitral valve prolapse with real-time 3-dimensional echocardiography: importance of annular saddle shape in the pathogenesis of mitral regurgitation. Circulation. 2013;127:832–41. This article is the first to support that annulus flattening in mitral valve prolapse is a marker for severity of MR.

    Article  PubMed  Google Scholar 

  14. Jensen MO, Hagege AA, Otsuji Y, Levine RA. The unsaddled annulus: biomechanical culprit in mitral valve prolapse? Circulation. 2013;127:766–8.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Agricola E, Oppizzi M, Maisano F, et al. Detection of mechanisms of immediate failure by transesophageal echocardiography in quadrangular resection mitral valve repair technique for severe mitral regurgitation. Am J Cardiol. 2003;91:175–9.

    Article  PubMed  Google Scholar 

  16. •• Ring L, Rana BS, Ho SY, Wells FC. The prevalence and impact of deep clefts in the mitral leaflets in mitral valve prolapse. Eur Heart J Cardiovasc Imaging. 2013;14(6):595–602. This is the first comprehensive 3D study of deep clefts in mitral valve prolapse.

  17. • Veronesi F, Corsi C, Sugeng L, et al. A study of functional anatomy of aortic-mitral valve coupling using 3D matrix transesophageal echocardiography. Circ Cardiovasc Imaging. 2009;2:24–31. The is the first study to describe the aortic and mitral valves as a coupled dynamic unit.

  18. Veronesi F, Caiani EG, Sugeng L, et al. Effect of mitral valve repair on mitral-aortic coupling: a real-time three-dimensional transesophageal echocardiography study. J Am Soc Echocardiogr. 2012;25:524–31.

    Article  PubMed  Google Scholar 

  19. •• Otani K, Takeuchi M, Kaku K, et al. Evidence of a vicious cycle in mitral regurgitation with prolapse: secondary tethering attributed to primary prolapse demonstrated by three-dimensional echocardiography exacerbates regurgitation. Circulation. 2012;126:S214–21. First to describe secondary functional MR in primary degenrative MR with LV dilatation.

    Article  PubMed  Google Scholar 

  20. Watanabe N, Ogasawara Y, Yamaura Y, et al. Quantitation of mitral valve tenting in ischemic mitral regurgitation by transthoracic real-time three-dimensional echocardiography. J Am Coll Cardiol. 2005;45:763–9.

    Article  PubMed  Google Scholar 

  21. Watanabe N, Ogasawara Y, Yamaura Y, et al. Mitral annulus flattens in ischemic mitral regurgitation: geometric differences between inferior and anterior myocardial infarction: a real-time 3-dimensional echocardiographic study. Circulation. 2005;112:I458–62.

    Article  PubMed  Google Scholar 

  22. Fattouch K, Castrovinci S, Murana G, et al. Multiplane two-dimensional vs real time three-dimensional transesophageal echocardiography in ischemic mitral regurgitation. Echocardiography. 2011;28:1125–32.

    Article  PubMed  Google Scholar 

  23. Saito K, Okura H, Watanabe N, et al. Influence of chronic tethering of the mitral valve on mitral leaflet size and coaptation in functional mitral regurgitation. JACC Cardiovasc Imaging. 2012;5:337–45.

    Article  PubMed  Google Scholar 

  24. • Zamorano JL, Goncalves A. Three dimensional echocardiography for quantification of valvular heart disease. Heart. 2013;99:811–8. This is an up-to-date review of 3DE quantification of valvular disease.

    Article  PubMed  Google Scholar 

  25. Yosefy C, Levine RA, Solis J, Vaturi M, Handschumacher MD, Hung J. Proximal flow convergence region as assessed by real-time 3-dimensional echocardiography: challenging the hemispheric assumption. J Am Soc Echocardiogr. 2007;20:389–96.

    Article  PubMed  Google Scholar 

  26. Kahlert P, Plicht B, Schenk IM, Janosi RA, Erbel R, Buck T. Direct assessment of size and shape of noncircular vena contracta area in functional vs organic mitral regurgitation using real-time three-dimensional echocardiography. J Am Soc Echocardiogr. 2008;21:912–21.

    Article  PubMed  Google Scholar 

  27. de Agustin JA, Marcos-Alberca P, Fernandez-Golfin C, et al. Direct measurement of proximal isovelocity surface area by single-beat three-dimensional color Doppler echocardiography in mitral regurgitation: a validation study. J Am Soc Echocardiogr. 2012;25:815–23.

    Article  PubMed  Google Scholar 

  28. Altiok E, Hamada S, van Hall S, et al. Comparison of direct planimetry of mitral valve regurgitation orifice area by three-dimensional transesophageal echocardiography to effective regurgitant orifice area obtained by proximal flow convergence method and vena contracta area determined by color Doppler echocardiography. Am J Cardiol. 2011;107:452–8.

    Article  PubMed  Google Scholar 

  29. Shanks M, Siebelink HM, Delgado V, et al. Quantitative assessment of mitral regurgitation: comparison between three-dimensional transesophageal echocardiography and magnetic resonance imaging. Circ Cardiovasc Imaging. 2010;3:694–700.

    Article  PubMed  Google Scholar 

  30. Flachskampf FA, Badano L, Daniel WG, et al. Recommendations for transoesophageal echocardiography: update 2010. Eur J Echocardiogr. 2010;11:557–76.

    Article  CAS  PubMed  Google Scholar 

  31. Vahanian A, Alfieri O, Andreotti F, et al. Guidelines on the management of valvular heart disease (version 2012): the Joint Task Force on the Management of Valvular Heart Disease of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Eur J Cardiothorac Surg. 2012;42:S1–44.

    Article  PubMed  Google Scholar 

  32. Grayburn PA, Weissman NJ, Zamorano JL. Quantitation of mitral regurgitation. Circulation. 2012;126:2005–17.

    Article  PubMed  Google Scholar 

  33. Biaggi P, Jedrzkiewicz S, Gruner C, et al. Quantification of mitral valve anatomy by three-dimensional transesophageal echocardiography in mitral valve prolapse predicts surgical anatomy and the complexity of mitral valve repair. J Am Soc Echocardiogr. 2012;25:758–65.

    Article  PubMed  Google Scholar 

  34. Ben Zekry S, Lang RM, Sugeng L, et al. Mitral annulus dynamics early after valve repair: preliminary observations of the effect of resectional vs nonresectional approaches. J Am Soc Echocardiogr. 2011;24:1233–42.

    Article  PubMed  Google Scholar 

  35. Langer F, Kunihara T, Hell K, et al. RING + STRING: successful repair technique for ischemic mitral regurgitation with severe leaflet tethering. Circulation. 2009;120:S85–91.

    Article  PubMed  Google Scholar 

  36. Greenhouse DG, Dellis SL, Schwartz CF, et al. Regional changes in coaptation geometry after reduction annuloplasty for functional mitral regurgitation. Ann Thorac Surg. 2012;93:1876–80.

    Article  PubMed  Google Scholar 

  37. Rim Y, Laing ST, Kee P, McPherson DD, Kim H. Evaluation of mitral valve dynamics. JACC Cardiovasc Imaging. 2013;6:263–8.

    Article  PubMed  Google Scholar 

  38. Zamorano J, Cordeiro P, Sugeng L, et al. Real-time three-dimensional echocardiography for rheumatic mitral valve stenosis evaluation: an accurate and novel approach. J Am Coll Cardiol. 2004;43:2091–6.

    Article  PubMed  Google Scholar 

  39. Zamorano J, Perez de Isla L, Sugeng L, et al. Noninvasive assessment of mitral valve area during percutaneous balloon mitral valvuloplasty: role of real-time 3D echocardiography. Eur Heart J. 2004;25:2086–91.

    Article  PubMed  Google Scholar 

  40. Messika-Zeitoun D, Brochet E, Holmin C, et al. Three-dimensional evaluation of the mitral valve area and commissural opening before and after percutaneous mitral commissurotomy in patients with mitral stenosis. Eur Heart J. 2007;28:72–9.

    Article  PubMed  Google Scholar 

  41. Schlosshan D, Aggarwal G, Mathur G, Allan R, Cranney G. Real-time 3D transesophageal echocardiography for the evaluation of rheumatic mitral stenosis. JACC Cardiovasc Imaging. 2011;4:580–8.

    Article  PubMed  Google Scholar 

  42. Min SY, Song JM, Kim YJ, et al. Discrepancy between mitral valve areas measured by two-dimensional planimetry and three-dimensional transoesophageal echocardiography in patients with mitral stenosis. Heart. 2013;99:253–8.

    Article  PubMed  Google Scholar 

  43. Thompson KA, Shiota T, Tolstrup K, Gurudevan SV, Siegel RJ. Utility of three-dimensional transesophageal echocardiography in the diagnosis of valvular perforations. Am J Cardiol. 2011;107:100–2.

    Article  PubMed  Google Scholar 

  44. Hansalia S, Biswas M, Dutta R, et al. The value of live/real time three-dimensional transesophageal echocardiography in the assessment of valvular vegetations. Echocardiography. 2009;26:1264–73.

    Article  PubMed  Google Scholar 

  45. •• Krim SR, Vivo RP, Patel A, et al. Direct assessment of normal mechanical mitral valve orifice area by real-time 3D echocardiography. JACC Cardiovasc Imaging. 2012;5:478–83. The first study of 3D TEE measurement of mechanical mitral valve area.

    Article  PubMed  Google Scholar 

  46. Sugeng L, Shernan SK, Weinert L, et al. Real-time three-dimensional transesophageal echocardiography in valve disease: comparison with surgical findings and evaluation of prosthetic valves. J Am Soc Echocardiogr. 2008;21:1347–54.

    Article  PubMed  Google Scholar 

  47. Kronzon I, Sugeng L, Perk G, et al. Real-time 3-dimensional transesophageal echocardiography in the evaluation of postoperative mitral annuloplasty ring and prosthetic valve dehiscence. J Am Coll Cardiol. 2009;53:1543–7.

    Article  PubMed  Google Scholar 

  48. Naqvi TZ. Echocardiography in percutaneous valve therapy. JACC Cardiovasc Imaging. 2009;2(10):1226–37.

    Google Scholar 

  49. Tsang W, Lang RM, Kronzon I. Role of real-time three dimensional echocardiography in cardiovascular interventions. Heart. 2011;97:850–7.

    Article  PubMed  Google Scholar 

  50. Cavalcante JL, Rodriguez LL, Kapadia S, Tuzcu EM, Stewart WJ. Role of echocardiography in percutaneous mitral valve interventions. JACC Cardiovasc Imaging. 2012;5:733–46. A current review of mitral interventional echocardiography.

    Article  PubMed  Google Scholar 

  51. Perk G, Kronzon I. Interventional echocardiography in structural heart disease. Curr Cardiol Rep. 2013;15:338.

    Article  PubMed  Google Scholar 

  52. Zamorano JL, Badano LP, Bruce C, et al. EAE/ASE recommendations for the use of echocardiography in new transcatheter interventions for valvular heart disease. J Am Soc Echocardiogr. 2011;24:937–65.

    Article  PubMed  Google Scholar 

  53. Sorajja P, Cabalka AK, Hagler DJ, Rihal CS. Percutaneous repair of paravalvular prosthetic regurgitation: acute and 30-day outcomes in 115 patients. Circ Cardiovasc Interv. 2011;4:314–21.

    Article  PubMed  Google Scholar 

  54. Kim MS, Casserly IP, Garcia JA, Klein AJ, Salcedo EE, Carroll JD. Percutaneous transcatheter closure of prosthetic mitral paravalvular leaks: are we there yet? JACC Cardiovasc Interv. 2009;2:81–90.

    Article  PubMed  Google Scholar 

  55. Rihal CS, Sorajja P, Booker JD, Hagler DJ, Cabalka AK. Principles of percutaneous paravalvular leak closure. JACC Cardiovasc Interv. 2012;5:121–30.

    Article  PubMed  Google Scholar 

  56. Binder RK, Webb JG. Percutaneous mitral and aortic paravalvular leak repair: indications, current application, and future directions. Curr Cardiol Rep. 2013;15:342.

    Article  PubMed  Google Scholar 

  57. Mauri L, Garg P, Massaro JM, et al. The EVEREST II Trial: design and rationale for a randomized study of the evalve mitraclip system compared with mitral valve surgery for mitral regurgitation. Am Heart J. 2010;160:23–9.

    Article  PubMed  Google Scholar 

  58. Feldman T, Wasserman HS, Herrmann HC, et al. Percutaneous mitral valve repair using the edge-to-edge technique: six-month results of the EVEREST Phase I Clinical Trial. J Am Coll Cardiol. 2005;46:2134–40.

    Article  PubMed  Google Scholar 

  59. Feldman T, Foster E, Glower DD, et al. Percutaneous repair or surgery for mitral regurgitation. N Engl J Med. 2011;364:1395–406.

    Article  CAS  PubMed  Google Scholar 

  60. Altiok E, Becker M, Hamada S, Reith S, Marx N, Hoffmann R. Optimized guidance of percutaneous edge-to edge repair of the mitral valve using real-time 3-D transesophageal echocardiography. Clin Res Cardiol. 2011;100:675–81.

    Article  PubMed  Google Scholar 

  61. Altiok E, Hamada S, Brehmer K, et al. Analysis of procedural effects of percutaneous edge-to-edge mitral valve repair by 2D and 3D echocardiography. Circ Cardiovasc Imaging. 2012;5:748–55.

    Article  PubMed  Google Scholar 

  62. Faletra FF, Pedrazzini G, Pasotti E, Moccetti T. Side-by-side comparison of fluoroscopy, 2D and 3D TEE during percutaneous edge-to-edge mitral valve repair. JACC Cardiovasc Imaging. 2012;5:656–61.

    Article  PubMed  Google Scholar 

  63. • Faletra FF, Pedrazzini G, Pasotti E, et al. Role of real-time three dimensional transoesophageal echocardiography as guidance imaging modality during catheter based edge-to-edge mitral valve repair. Heart. 2013;99(16):1204–15. An uptodate review of 3D TEE in percutaneousedge-to-edge mitral valve repair.

  64. Settergren M, Back M, Shahgaldi K, Jacobsen P, Winter R. 3D TEE with stereovision for guidance of the transcatheter mitral valve repair. JACC Cardiovasc Imaging. 2012;5:1066–9. A unique study that suggests the potential for stereovision in 3D echo.

    Article  PubMed  Google Scholar 

  65. Delgado V, Kapadia S, Marsan NA, Schalij MJ, Tuzcu EM, Bax JJ. Multimodality imaging before, during, and after percutaneous mitral valve repair. Heart. 2011;97:1704–14.

    Article  PubMed  Google Scholar 

  66. Cheung A, Webb JG, Wong DR, et al. Transapical transcatheter mitral valve-in-valve implantation in a human. Ann Thorac Surg. 2009;87:e18–20.

    Article  PubMed  Google Scholar 

  67. Nunez-Gil IJ, Goncalves A, Rodriguez E, et al. Transapical mitral valve-in-valve implantation: a novel approach guided by three-dimensional transoesophageal echocardiography. Eur J Echocardiogr. 2011;12:335–7.

    Article  PubMed  Google Scholar 

  68. Theron A, Gariboldi V, Grisoli D, et al. Three-dimensional transesophageal echocardiography assessment of a successful transcatheter mitral valve in valve implantation for degenerated bioprosthesis. Echocardiography. 2013;30(6):E152–5.

    Google Scholar 

  69. Bonow RO, Carabello BA, Chatterjee K, et al. Focused update incorporated into the ACC/AHA 2006 guidelines for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the 1998 Guidelines for the Management of Patients With Valvular Heart Disease): endorsed by the Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. Circulation. 2008;118:e523–661.

    Article  PubMed  Google Scholar 

  70. Langerveld J, Valocik G, Plokker HW, et al. Additional value of three-dimensional transesophageal echocardiography for patients with mitral valve stenosis undergoing balloon valvuloplasty. J Am Soc Echocardiogr. 2003;16:841–9.

    Article  PubMed  Google Scholar 

  71. Applebaum RM, Kasliwal RR, Kanojia A, et al. Utility of three-dimensional echocardiography during balloon mitral valvuloplasty. J Am Coll Cardiol. 1998;32:1405–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Sonia Jain declares that she has no conflict of interest. Joseph F. Malouf declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph F. Malouf.

Additional information

This article is part of the Topical Collection on Valvular Heart Disease

Electronic supplementary material

Below is the link to the electronic supplementary material.

Live 3D Zoom three-dimensional transesophageal echocardiography ‘surgeons view’ from the left atrial perspective of the mitral valve, demonstrating a P2 prolapse with a ruptured chord. © Mayo Foundation (MPG 683 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jain, S., Malouf, J.F. Incremental Value of 3-D Transesophageal Echocardiographic Imaging of the Mitral Valve. Curr Cardiol Rep 16, 439 (2014). https://doi.org/10.1007/s11886-013-0439-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-013-0439-2

Keywords

Navigation