Skip to main content
Log in

Affect of food provisioning on survival and reproductive success of the olive fruit fly parasitoid, Psyttalia lounsburyi, in the field

  • Original Paper
  • Published:
Arthropod-Plant Interactions Aims and scope Submit manuscript

Abstract

Conservation biological control offers approaches that can be integrated into classical biological control programs to enhance pest suppression. Food subsidies, such as nectar and honeydew, can increase a parasitoid’s fecundity either by extension of the reproductive lifespan, increasing the rate of egg maturation, or both. The olive fruit fly, Bactrocera oleae, is a major pest of olives in California, where a classical biological control program is currently underway using an exotic parasitoid, Psyttalia lounsburyi. We conducted a field study where female–male pairs of P. lounsburyi wasps were caged with B. oleae-infested olives, and provisioned either with or without food. Our study showed that adult feeding is crucial to P. lounsburyi survival and fecundity under field-cage conditions. Food provision increased P. lounsburyi survival and several components of the wasp’s reproductive success; nevertheless, parasitism rates and offspring production were relatively low. This was probably due, at least in part, to location of host larvae in enemy-free space ‘beyond the reach’ of the wasp’s ovipositor. Sex ratio of offspring was male-biased, perhaps due to inbreeding in the laboratory colony from which P. lounsburyi was sourced. Female wasps carried ca. 25–35 eggs at their time of death, suggesting that they were time limited rather than egg limited. Integration of conservation biological control (e.g., food provisioning) and classical biological control (release of an exotic natural enemy) have promise to suppress olive fruit fly populations. Evaluation of the effect of food provisioning on P. lounsburyi reproductive success under open field conditions is warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Avilla J, Albajes R (1984) The influence of female age and host size on the sex ratio of Opius concolor. Entomol Exp Appl 35:43–47

    Article  Google Scholar 

  • Bartolini G, Petrucelli R (2002) Classification, origin, diffusion and history of the olive. FAO, Rome, pp 74

    Google Scholar 

  • Benelli G, Giunti G, Tena A, Desneux N, Caselli A, Canale A (2017) The impact of adult diet on parasitoid reproductive performance. J Pest Sci 90:807–823

    Article  Google Scholar 

  • Berndt L, Wratten SD (2005) Effects of alyssum flowers on the longevity, fecundity, and sex ratio of the leafroller parasitoid Dolichogenidea tasmanica. Biol Control 32:65–69. https://doi.org/10.1016/j.biocontrol.2004.07.014

    Article  Google Scholar 

  • Bogdanov S (2017a) Honey Composition. In: The Honey Book, Chap. 5. Bee Product Science, New York, pp 1–10

    Google Scholar 

  • Bogdanov S (2017b) Pollen Composition. In: The Pollen Book, Chap. 1. Bee Product Science, New York, pp 1–13

    Google Scholar 

  • Byers JA, Wood DL (1980) Interspecific inhibition of the response of the bark beetles, Dendroctonus brevicomis and Ips paraconfusus, to their pheromones in the field. J Chem Ecol 6:149–164

    Article  CAS  Google Scholar 

  • Casas J, Driessen G, Mandon N, Wielaard S, Desouhant E, van Alphen J, Lapchin L, Rivero A, Christides JP, Bernstein C (2003) Strategies of energy acquisition and use of a parasitoid foraging in the wild. J Anim Ecol 72:691–697

    Article  PubMed  Google Scholar 

  • Chen YH, Gols R, Benrey B (2015) Crop domestication and its impact on naturally selected trophic interactions. Annu Rev Entomol 60:35–58

    Article  CAS  PubMed  Google Scholar 

  • Cheyppe-Buchmann S, Bon M-C, Warot S, Jones W, Malausa T, Fauvergue X, Ris N (2011) Molecular characterization of Psyttalia lounsburyi, a candidate biocontrol agent of the olive fruit fly, and its Wolbachia symbionts as a pre-requisite for future intraspecific hybridization. Biocontrol 56:713–724

    Article  Google Scholar 

  • Cook JM, Butcher RDJ (1999) The transmission and effects of Wolbachia bacteria in parasitoids. Res Popul Ecol 41:15–28. https://doi.org/10.1007/PL00011978

    Article  Google Scholar 

  • Copeland RC, White IM, Okumu M, Machera P, Wharton RA (2004) Insects associated with fruits of the Oleaceae (Asteridae, Lamiales) in Kenya, with special reference to the tephritidae (Diptera). Bishop Mus Bull Entomol 12:135–164

    Google Scholar 

  • Daane KM, Johnson MW (2010) Olive fruit fly: managing an ancient pest in modern times. Annu Rev Entomol 55:151–169

    Article  CAS  PubMed  Google Scholar 

  • Daane KM, Sime KR, Wang X-G, Nadel H, Johnson MW, Walton VM, Kirk A, Pickett C (2008) Psyttalia lounsburyi (Hymenoptera: Braconidae), potential biological control agent for the olive fruit fly in California. Biol Control 44:79–89

    Article  Google Scholar 

  • Daane KM, Wang X-G, Nieto DJ, Pickett CH, Hoelmer KA, Blanchet A, Johnson MW (2015) Classic biological control of olive fruit fly in California, USA: release and recovery of introduced parasitoids. Biocontrol 60:317–330

    Article  Google Scholar 

  • Divya S, Kalyanasundaram M, Karuppuchamy P (2011) Effect of adult nutrition on longevity and parasitisation efficiency of Acerophagus papayae Noyes and Schauff (Hymenoptera: Encyrtidae). Biol Control 25:316–319

    Google Scholar 

  • England S, Evans EW (1997) Effects of pea aphid (Homoptera: Aphididae) honeydew on longevity and fecundity of the alfalfa weevil (Coleoptera: Curculionidae) parasitoid Bathyplectes curculionis (Hymenoptera: Ichneumonidae). Environ Entomol 26:1437–1441

    Article  Google Scholar 

  • Fuchsberg JR, Yong TH, Losey JE, Carter ME, Hoffmann MP (2007) Evaluation of corn leaf aphid (Rhopalosiphum maidis; Homoptera: Aphididae) honeydew as a food source for the egg parasitoid Trichogramma ostriniae (Hymenoptera: Trichogrammatidae). Biol Control 40:230–236

    Article  Google Scholar 

  • Furtado C, Belo AF, Nunes FM, Ganhão E, Müller CT, Torres L, Rei FT (2016) Evaluating potential olive orchard sugar food sources for the olive fly parasitoid, Psyttalia concolor. BioControl 61:473–483

    Article  CAS  Google Scholar 

  • Genç H, Nation JL (2008) Maintaining Bactrocera oleae (Gmelin.) (Diptera. Tephritidae) colony on its natural host in the laboratory. J Pest Sci 81:167–174

    Article  Google Scholar 

  • Géneau CE, Wäckers FL, Luka H, Balmer O (2013) Effects of extrafloral and floral nectar of Centaurea cyanus on the parasitoid wasp Microplitis mediator: olfactory attractiveness and parasitization rates. Biol Control 66:16–20

    Article  Google Scholar 

  • Gurr GM, Wratten SD, Landis DA, You M (2017) Habitat management to suppress pest populations: progress and prospects. Annu Rev Entomol 62:91–109

    Article  CAS  PubMed  Google Scholar 

  • Heimpel GE, Casas J (2008) Parasitoid foraging and oviposition behavior in the field. In: Wajnberg É, Bernstein C, van Alphen J (eds) Behavioral ecology of insect parasitoids: from theoretical approaches to field applications. Blackwell Publishing Ltd, Oxford. https://doi.org/10.1002/9780470696200.ch3

    Chapter  Google Scholar 

  • Heimpel GE, Jervis MA (2005) Does floral nectar improve biological control by parasitoids? In: Wäckers FL, van Rijn PCJ, Bruin J (eds) Plant-provided food for carnivorous insects: a protective mutualism and its applications. Cambridge University Press, Cambridge, pp 267–304

    Chapter  Google Scholar 

  • Hepdurgun B, Turanli T, Zümreoğlu A (2009) Parasitism rate and sex ratio of Psyttalia (= Opius) concolor (Hymenoptera: Braconidae) reared on irradiated Ceratitis capitata larvae (Diptera: Tephritidae). Biocontrol Sci Technol 19 S1:157–165. https://doi.org/10.1080/09583150903090479

    Article  Google Scholar 

  • Hu H-Y, Chen Z-Z, Duan B-S, Zheng J-T, Zhang T-X (2012) Effects of female diet and age on offspring sex ratio of the solitary parasitoid Pachycrepoideus vindemmiae (Rondani) (Hymenoptera, Pteromalidae). RevBrasil Entomol 56:259–262. https://doi.org/10.1590/S0085-56262012005000028 Epub June 19, 2012.

    Article  Google Scholar 

  • Irvin NA, Hoddle MS, Castle SJ (2007) The effect of resource provisioning and sugar composition of foods on longevity of three Gonatocerus spp., egg parasitoids of Homalodisca vitripennis. Biol Control 40:69–79

    Article  Google Scholar 

  • Jamont M, Dubois-Pot C, Jaloux B (2014) Nectar provisioning close to host patches increases parasitoid recruitment, retention and host parasitism. Basic Appl Ecol 15:151–160

    Article  Google Scholar 

  • Landis DA, Wratten SD, Gurr GM (2000) Habitat management to conserve natural enemies of arthropod pests in agriculture. Annu Rev Entomol 45:175–201

    Article  CAS  PubMed  Google Scholar 

  • La-Spina M, Pickett C, Daane KM, Hoelmer K, Blanchet A, Williams L (2018) Effect of exposure time on mass-rearing production of the olive fruit fly parasitoid, Psyttalia lounsburyi (Hymenoptera: Braconidae). J Appl Entomol 142:319–326

    Article  CAS  Google Scholar 

  • Lee JC, Heimpel GE (2008a) Effect of floral nectar, water, and feeding frequency on Cotesia glomerata longevity. Biocontrol 53:289–294

    Article  Google Scholar 

  • Lee JC, Heimpel GE (2008b) Floral resources impact longevity and oviposition rate of a parasitoid in the field. J Anim Ecol 77:565–572

    Article  PubMed  Google Scholar 

  • Loni A (2003) Impact of host exposure time on mass-rearing of Psyttalia concolor (Hymenoptera Braconidae) on Ceratitis capitata (Diptera Tephritidae). Bull Insectology 56:277–282

    Google Scholar 

  • Mkize N, Hoelmer K, Villet MH (2008) A survey of fruit-feeding insects and their parasitoids occurring on wild olives, Olea europea ssp. cuspidata, in the Eastern Cape of South Africa. Biocontrol Sci Technol 18:991–1004

    Article  Google Scholar 

  • Mutitu EK, Garnas JR, Hurley BP, Wingfield MJ, Harney M, Bush SJ, Slippers B (2013) Biology and rearing of Cleruchoides noackae (Hymenoptera: Mymaridae), an egg parasitoid for the biological control of Thaumastocoris peregrinus (Hemiptera:Thaumastocoridae). J Econ Entomol 106:1979–1985

    Article  PubMed  Google Scholar 

  • Neuenschwander P (1982) Searching parasitoids of Dacus oleae (Gmel.) (Dipt. Tephritidae) in South Africa. Z Angew Entomol 94:509–522

    Article  Google Scholar 

  • Ode P, Hardy I (2008) Parasitoid sex ratios and biological control. Behav Ecol Insect Parasit. https://doi.org/10.1002/9780470696200.ch12

    Article  Google Scholar 

  • Orre Gordon GUS, Wratten SD, Jonsson M, Simpson M, Hale R (2012) ‘Attract and reward’: combining a herbivore-induced plant volatile with floral resource supplementation—multi-trophic level effects. Biol Control 64:106–115

    Article  CAS  Google Scholar 

  • Paredes D, Cayuela L, Gurr GM, Campos M (2013) Effect of non-crop vegetation types on conservation biological control of pests in olive groves. PeerJ 1:e116. https://doi.org/10.7717/peerj.116

    Article  PubMed  PubMed Central  Google Scholar 

  • Rice RE, Phillips PA, Stewart-Leslie J, Sibbett GS (2003) Olive fruit fly populations measured in Central and Southern California. Calif Agric 57:122–127

    Article  Google Scholar 

  • Rosenheim JA, Jepsen SJ, Matthews CE, Solance Smith D, Rosenheim MR (2008) Time limitation, egg limitation, the cost of oviposition, and lifetime reproduction by an insect in nature. Am Nat 172:486–496

    Article  PubMed  Google Scholar 

  • Sabelis MW, van Rijn PCJ, Janssen A (2005) Fitness consequences of food-for-protection strategies in plants. In: Wäckers FL, van Rijn PCJ, Bruin J (eds) Plant-provided food for carnivorous insects: a protective mutualism and its applications. Cambridge University Press, Cambridge, pp 109–134

    Chapter  Google Scholar 

  • SAS Institute, Inc (2013) Release 9.4 edition. Cary, NC

    Google Scholar 

  • Sime KR, Daane KM, Andrews JW, Hoelmer K, Pickett CH, Nadel H, Johnson M, Messing R (2006a) The biology of Bracon celer as a parasitoid of the olive fruit fly. Biocontrol 51:553–567

    Article  Google Scholar 

  • Sime KR, Daane KM, Messing RH, Johnson MW (2006b) Comparison of two laboratory cultures of Psyttalia concolor (Hymenoptera: Braconidae), as a parasitoid of the olive fruit fly. Biol Control 39:248–255

    Article  Google Scholar 

  • Sime KR, Daane KM, Nadel H, Funk CS, Messing RH, Andrews JW Jr, Johnson MW, Pickett CH (2006c) Diachasmimorpha longicaudata and D. kraussii (Hymenoptera: Braconidae), potential parasitoids of the olive fruit fly. Biocontrol Sci Technol 16:169–179

    Article  Google Scholar 

  • Sime KR, Daane KM, Kirk A, Andrews JW, Johnson MW, Messing RH (2007) Psyttalia ponerophaga (Hymenoptera: Braconidae) as a potential biological control agent of olive fruit fly Bactrocera oleae (Dipera: Tephritidae) in California. Bull Entomol Res 97:233–242

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Singh K, Upadhyay BS (2000) Honeydew as a food source for an aphid parasitoid Lipolexis scutellaris Mackauer (Hymenoptera: Braconidae). J Adv Zool 21:77–83

    Google Scholar 

  • Sivinski J, Aluja M, Holler T (2006) Food sources for adult Diachasmimorpha longicaudata, a parasitoid of tephritid fruit flies: effects on longevity and fecundity. Entomol Exp Appl 118:193–202

    Article  Google Scholar 

  • Steppuhn A, Wäckers FL (2004) HPLC sugar analysis reveals the nutritional state and the feeding history of parasitoids. Funct Ecol 18:812–819. https://doi.org/10.1111/j.0269-8463.2004.00920.x

    Article  Google Scholar 

  • Thaon M, Blanchet A, Ris N (2009) Contribution à l’optimisation de l’élevage du parasitoïde Psyttalia lounsburyi. Cahr Techn INRA 66:21–31

    Google Scholar 

  • Tylianakis JM, Didham RK, Wratten SD (2004) Improved fitness of aphid parasitoids receiving resource subsidies. Ecology 85:658–666

    Article  Google Scholar 

  • Tzanakakis ME (2003) Seasonal development and dormancy of insects and mites feeding on olive: a review. Neth J Zool 52:87–224

    Article  Google Scholar 

  • Wang X-G, Johnson MW, Daane KM, Yokoyama VY (2009a) Larger olive fruit size reduces the efficiency of Psyttalia concolor, as a parasitoid of the olive fruit fly. Biol Control 49:45–51

    Article  Google Scholar 

  • Wang X-G, Nadel H, Johnson MW, Daane KM, Hoelmer K, Walton VM, Pickett CH, Sime KR (2009b) Crop domestication relaxes both top-down and bottom-up effects on a specialist herbivore. Basic Appl Ecol 10:216–227

    Article  Google Scholar 

  • Wang X-G, Johnson MW, Yokoyama VY, Pickett CH, Daane KM (2011a) Comparative evaluation of two olive fruit fly parasitoids under varying abiotic conditions. Biocontrol 56:283–293

    Article  CAS  Google Scholar 

  • Wang X-G, Johnson MW, Opp SB, Krugner R, Daane KM (2011b) Honeydew and insecticide bait as competing food resources for a fruit fly and common natural enemies in the olive agroecosystem. Entomol Exp Appl 139:128–137

    Article  Google Scholar 

  • Wellings PW, Morton R, Hart PJ (1986) Primary sex-ratio and differential progeny survivorship in solitary haplo-diploid parasitoids. Ecol Entomol 11:341–348

    Article  Google Scholar 

  • Williams III L, Zhu Y-C, Snodgrass GL, Manrique V (2012) Plant-mediated decisions by an herbivore affect oviposition pattern and subsequent egg parasitism. Arthropod Plant Interact 6:159–169. https://doi.org/10.1007/s11829-011-9165-0

    Article  Google Scholar 

  • Williams III L, Deschodt P, Pointurier O, Wyckhuys KAG (2015) Sugar concentration and timing of feeding affect feeding characteristics and survival of a parasitic wasp. J Ins Physiol 79:10–18. https://doi.org/10.1016/j.jinsphys.2015.05.004

    Article  CAS  Google Scholar 

  • Winkler K, Wäckers FL, Bukovinszkine-Kiss G, van Lenteren J (2006) Sugar resources are vital for Diadegma semiclausum fecundity under field conditions. Basic Appl Ecol 7:133–140

    Article  Google Scholar 

  • Wong TTY, Ramadan MM (1992) Mass rearing biology of larval parasitoids (Hymenoptera: Braconidae: Opiinae) of tephritid flies (Diptera: Tephritidae) in Hawaii. In: Anderson TE, Leppla NC, eds. Advances in insect rearing for research and past management. Westview, Boulder, pp 405–426

    Google Scholar 

  • Yokoyama VY (2012) Olive fruit fly (Diptera: Tephritidae) in California: longevity, oviposition, and development in canning olives in the laboratory and greenhouse. J Econ Entomol 105:186–195

    Article  PubMed  Google Scholar 

  • Yokoyama VY, Rendón PA, Wang X-G, Opp SB, Johnson MW, Daane KM (2011) Response of Psyttalia humilis (Hymenoptera: Braconidae) to olive fruit fly (Diptera: Tephritidae) and conditions in California olive orchards. Environ Entomol 40:315–323

    Article  Google Scholar 

  • Zar JH (1996) Biostatistical Analysis, 3rd edn. Prentice-Hall, Upper Saddle River, 662 pp

    Google Scholar 

Download references

Acknowledgements

We are grateful to the Vialla family for allowing us to conduct this study at the Domaine de l’Oulivie. We thank D. Boykin (USDA-ARS) for statistical advice, and A. Blanchet and M. La-Spina (both USDA-ARS) for providing P. lounsburyi. Helpful comments on the manuscript were given by E. Riddick (USDA-ARS) and anonymous reviewers. This work was supported by USDA-ARS appropriated funding. This article reports the results of research only. Mention of a proprietary product does not constitute an endorsement or a recommendation by the USDA for its use. The USDA is an equal opportunity provider and employer. The U. S. Government has the right to retain a non-exclusive, royalty-free license in and to any copyright of this article.

Author information

Authors and Affiliations

Authors

Contributions

LW conceived the study, designed the experiments, and analyzed the data. All authors contributed to the laboratory and field research and writing and review of the manuscript.

Corresponding author

Correspondence to Livy Williams III.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling Editor: Dagmar Voigt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Williams, L., Pointurier, O. & Deschodt, P. Affect of food provisioning on survival and reproductive success of the olive fruit fly parasitoid, Psyttalia lounsburyi, in the field. Arthropod-Plant Interactions 13, 299–309 (2019). https://doi.org/10.1007/s11829-019-09684-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11829-019-09684-1

Keywords

Navigation