Skip to main content
Log in

A network approach reveals parasitoid wasps to be generalized nectar foragers

  • Original Paper
  • Published:
Arthropod-Plant Interactions Aims and scope Submit manuscript

Abstract

Despite many efforts to sustain parasitoid populations in agroecosystems to help control pests, relatively little is known about parasitoid-flower interactions and how dependent each partner is on the other. There are few comprehensive, species-specific, community-level observations of parasitoid-flower interactions. Observing flower visitation by parasitoid species is challenging because most parasitoids are small and visit flowers infrequently. Further, the extreme diversity of parasitoids poses challenges for identification, and only a few experts can identify parasitoids to species. To explore the potential for a flower-visitor network approach to improve our understanding of parasitoid foraging ecology, we utilized published and publicly available flower-visitor datasets from the Interaction Web Database. Parasitoid species were present in almost half of the flower-visitor datasets in the Interaction Web Database but constituted a very small proportion of all flower visiting species. We analyzed the only parasitoid-flower subnetwork that was both speciose and documented heterogeneity in the number of flowering plant species visited by parasitoids. On average, parasitoids were more generalized in flower visitation than predicted under null expectations, given their prevalence in the network. Further, many individual flower and parasitoid species might be more generalized than they appeared as evidenced by a specialization metric less biased by sampling effects. These plant and parasitoid species might therefore be more useful for conservation biological control efforts than initially expected. Finally, the nested structure of the network indicates the potential for a subset of the flower community to support generalized, and any potential specialized, parasitoid nectar foragers in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Al-Doghairi MA, Cranshaw WS (1999) Surveys on visitation of flowering landscape plants by common biological control agents in Colorado. J Kansas Entomol Soc 72:190–196

    Google Scholar 

  • Araj SE, Wratten S, Lister A, Buckley H (2009) Adding floral nectar resources to improve biological control: potential pitfalls of the fourth trophic level. Basic Appl Ecol 10:554–562

    Article  Google Scholar 

  • Arroyo MTK, Primack RB, Armesto JJ (1982) Community studies in pollination ecology in the high temperate Andes of Central Chile. I. Pollination mechanisms and altitudinal variation. Am J Bot 69:82–97

    Article  Google Scholar 

  • Balzan MV, Moonen A-C (2014) Field margin vegetation enhances biological control and crop damage suppression from multiple pests in organic tomato fields. Entomol Exp Appl 150:45–65

    Article  Google Scholar 

  • Barrett SCH, Helenurm K (1987) The reproductive-biology of boreal forest herbs. 1. Breeding systems and pollination. Can J Bot 65:2036–2046

    Article  Google Scholar 

  • Bartomeus I. Vilà M, Santamaria L (2008) Contrasting effects of invasive plants in plant-pollinator networks. Oecologia 155:761–770

    Article  PubMed  Google Scholar 

  • Bascompte J, Jordano P (2013) Mutualistic networks. Princeton University Press, Princeton

    Book  Google Scholar 

  • Bascompte J, Jordano P, Melián CJ, Olesen JM (2003) The nested assembly of plant-animal mutualistic networks. Proc Natl Acad Sci USA 100:9383–9387

    Article  CAS  PubMed  Google Scholar 

  • Begg GS, Cook SM, Dye R, Ferrante M, Franck P, Lavigne C, Lövei GL, Mansion-Vaquie A, Pell JK, Petit S, Quesada N, Ricci B, Wratten SD, Birch ANE (2017) A functional overview of conservation biological control. Crop Prot 97:145–158

    Article  Google Scholar 

  • Begum M, Gurr GM, Wratten SD, Hedberg PR, Nicol HI (2006) Using selective food plants to maximize biological control of vineyard pests. J Appl Ecol 43:547–554

    Article  Google Scholar 

  • Bezerra ELS, Machado IC, Mello MAR (2009) Pollination networks of oil-flowers: a tiny world within the smallest of all worlds. J Anim Ecol 78:1096–1101

    Article  PubMed  Google Scholar 

  • Blüthgen N (2010) Why network analysis is often disconnected from community ecology: a critique and an ecologist’s guide. Basic Appl Ecol 11:185–195

    Article  Google Scholar 

  • Blüthgen N, Menzel F, Blüthgen N (2006) Measuring specialization in species interaction networks. BMC Ecol 6:1–12

    Article  Google Scholar 

  • Blüthgen N, Fründ J, Vázquez DP, Menzel F (2008) What do interaction network metrics tell us about specialization and biological traits? Ecology 89:3387–3399

    Article  PubMed  Google Scholar 

  • Brewer GJ, Sorensen EL, Horber EK (1983) Trichomes and field resistance of Medicago species to the alfalfa seed chalcid (Hymenoptera: Eurytomidae). Environ Entomol 12:247–251

    Article  Google Scholar 

  • Bugg RL, Wilson LT (1989) Ammi visnaga (L.) Lamarck (Apiaceae): associated beneficial insects and implications for biological control, with emphasis on the bell-pepper agroecosystem. Biol Agric Hortic 6:241–268

    Article  Google Scholar 

  • Burkle LA, Alarcón R (2011) The future of plant-pollinator diversity: understanding interaction networks across time, space, and global change. Am J Bot 98:528–538

    Article  PubMed  Google Scholar 

  • Burkle LA, Marlin JC, Knight TM (2013) Plant-pollinator interactions over 120 years: loss of species, co-occurrence, and function. Science 339:6127

    Article  CAS  Google Scholar 

  • Burnham K, Anderson D (2001) Kullback-Leiber information as a basis for strong inference in ecological studies. Wildl Res 28:111–119

    Article  Google Scholar 

  • CaraDonna PJ, Petry WK, Brennan RM et al (2017) Interaction rewiring and the rapid turnover of plant-pollinator networks. Ecol Lett 20:385–394

    Article  PubMed  Google Scholar 

  • Clements RE, Long FL (1923) Experimental pollination: an outline of the ecology of flowers and insects. Carnegie Institute of Washington, Washington D.C.

    Google Scholar 

  • Costanza R, D’Arge R, de Groot R et al (1997) The value of the world’s ecosystem services and natural capital. Nature 387:253–260

    Article  CAS  Google Scholar 

  • Dormann CF, Fründ J, Blüthgen N, Gruber B (2009) Indices, graphs and null models: analyzing bipartite ecological networks. Open Ecol J 2:7–24

    Article  Google Scholar 

  • Dupont YL, Hansen DM, Olesen JM (2003) Structure of a plant-flower-visitor network in the high-altitude sub-alpine desert of Tenerife, Canary Islands. Ecography 26:301–310

    Article  Google Scholar 

  • Elberling H, Olesen JM (1999) The structure of a high latitude plant-flower visitor system: the dominance of flies. Ecography 22:314–323

    Article  Google Scholar 

  • Forbes AA, Bagley RK, Beer MA et al (2018) Quantifying the unquantifiable: why Hymenoptera—not Coleoptera—is the most speciose animal order. bioRxiv. https://doi.org/10.1101/274431

    Article  Google Scholar 

  • Fründ J, McCann KS, Williams NM (2016) Sampling bias is a challenge for quantifying specialization and network structure: lessons from a quantitative niche model. Oikos 125:502–513

    Article  Google Scholar 

  • Géneau CE, Wäckers FL, Luka H, Daniel C, Balmer O (2012) Selective flowers to enhance biological control of cabbage pests by parasitoids. Basic Appl Ecol 13:85–93

    Article  Google Scholar 

  • Gillespie MAK, Gurr GM, Wratten SD (2016) Beyond nectar provision: the other resource requirements of parasitoid biological control agents. Entomol Exp Appl 159:207–221

    Article  Google Scholar 

  • Godfray HCJ (1994) Parasitoids: behavioral and evolutionary ecology. Princeton University Press, Princeton

    Google Scholar 

  • Gurr GM, Wratten SD, Tylianakis J et al (2005) Providing plant foods for natural enemies in farming systems: balancing practicalities and theory. In: Wäckers FL, van Rijn PCJ, Bruin J (eds) Plant-provided food for carnivorous insects: a protective mutualism and its applications. Cambridge University Press, Cambridge, pp 326–347

    Chapter  Google Scholar 

  • Gurr GM, Lu Z, Zheng X et al (2016) Multi-country evidence that crop diversification promotes ecological intensification of agriculture. Nat Plants 2:16014

    Article  PubMed  Google Scholar 

  • Gurr G, Wratten SD, Landis DA, You M (2017) Habitat management to suppress pest populations: progress and prospects. Annu Rev Entomol 62:91–109

    Article  CAS  PubMed  Google Scholar 

  • Hassan VE (1967) Untersuchung über die Bedeutung der Kraut und Strauchshicht als Nahrungsquelle für Imagines entomophager Hymenoptera. Zeitschrift für angewandte Entomologie 60:238–265

    Article  Google Scholar 

  • Heimpel GE, Jervis MA (2005) Does floral nectar improve biological control by parasitoids? In: Wäckers FL, van Rijn PCJ, Bruin J (eds) Plant-provided food for carnivorous insects: a protective mutualism and its applications. Cambridge University Press, Cambridge, pp 267–304

    Chapter  Google Scholar 

  • Hocking B (1968) Insect-flower associations in the high arctic with special reference to nectar. Oikos 19:359–388

    Article  Google Scholar 

  • Idris AB, Grafius E (1995) Wildflowers as nectar sources for Diadegma insulare (Hymenoptera: Ichneumonidae), a parasitoid of diamondback moth (Lepidoptera: Yponomeutidae). Environ Entomol 24:1726–1735

    Article  Google Scholar 

  • Idris AB, Grafius E (1997) Nectar-collecting behavior of Diadegma insulare (Hymenoptera: Ichneumonidae), a parasitoid of diamondback moth (Lepidoptera: Plutellidae). Biol Control 26:114–120

    Google Scholar 

  • Inouye DW, Pyke GH (1988) Pollination biology in the Snowy Mountains of Australia: comparisons with montane Colorado, USA. Aust J Ecol 13:191–210

    Article  Google Scholar 

  • Jervis MA (1998) Functional and evolutionary aspects of mouthpart structure in parasitoid wasps. Biol J Linn Soc 63:461–493

    Article  Google Scholar 

  • Jervis MA, Kidd NAC, Fitton MG et al (1993) Flower-visiting by hymenopteran parasitoids. J Nat Hist 27:67–105

    Article  Google Scholar 

  • Kaiser-Bunbury CN, Memmott J, Müller CB (2009) Community structure of pollination webs of Mauritian heathland habitats. Perspect Plant Ecol 11:241–254

    Article  Google Scholar 

  • Kato M, Makutani T, Inoue T, Itino T (1990) Insect-flower relationship in the primary beech forest of Ashu, Kyoto: an overview of the flowering phenology and seasonal pattern of insect visits. Contr Biol Lab Kyoto Univ 27:309–375

    Google Scholar 

  • Kevan PG (1970) High arctic insect-flower visitor relations: the inter-relationships of arthropods and flowers at Lake Hazen, Ellesmere Island, Northwest Territories, Canada. Dissertation, University of Alberta

  • Kevan PG (1973) Parasitoid wasps as flower visitors in the Canadian high arctic. Anzeiger für Schädlingskd 46:3–7

    Article  Google Scholar 

  • Lenaerts M, Goelen T, Paulussen C et al (2017) Nectar bacteria affect life history of a generalist aphid parasitoid by altering nectar chemistry. Funct Ecol 31(11):2061–2069

    Article  Google Scholar 

  • Letourneau DK, Bothwell Allen SG, Kula RR et al (2015) Habitat eradication and cropland intensification may reduce parasitoid diversity and natural pest control services in annual crop fields. Elem Sci Anthr 3:000069

    Article  Google Scholar 

  • Losey JE, Vaughan M (2008) Conserving the ecological services provided by insects. Am Entomol 54:113–115

    Article  Google Scholar 

  • Maingay HM, Bugg RL, Carlson RW, Davidson NA (1991) Predatory and parasitic wasps (Hymenoptera) feeding at flowers of sweet fennel (Foeniculum vulgare Miller var. dulce Battandier & Trabut, Apiaceae) and spearmint (Mentha spicata L., Lamiaceae) in Massachusetts. Biol Agric Hortic 7:363–383

    Article  Google Scholar 

  • McMullen CK (1993) Flower-visiting insects of the Galapagos Islands. Pan-Pac Entomol 69:95–106

    Google Scholar 

  • Medan D, Montaldo NH, Devoto M, Mantese A, Vasellati V, Bartoloni NH (2002) Plant-pollinator relationships at two altitudes in the Andes of Mendoza, Argentina. Arc Antarct Alp Res 34:233–241

    Article  Google Scholar 

  • Memmott J (1999) The structure of a plant-pollinator food web. Ecol Lett 2:276–280

    Article  Google Scholar 

  • Memmott J, Waser NM (2002) Integration of alien plants into a native flower-pollinator visitation web. Proc R Soc B 269:2395–2399

    Article  PubMed  Google Scholar 

  • Memmott J, Waser NM, Price MV (2004) Tolerance of pollination networks to species extinctions. Proc R Soc B 271:2605–2611

    Article  PubMed  Google Scholar 

  • Memmott J, Craze PG, Waser NM, Price MV (2007) Global warming and the disruption of plant-pollinator interactions. Ecol Lett 10:710–717

    Article  PubMed  Google Scholar 

  • Menz MHM, Brown GR, Dixon KW, Phillips RD (2015) Absence of nectar resource partitioning in a community of parasitoid wasps. J Insect Conserv 19:703–711

    Article  Google Scholar 

  • Mosquin T, Martin JEH (1967) Observations on the pollination biology of plants on Melville Island, N.W.T., Canada. Can Field Nat 81:201–205

    Google Scholar 

  • Motten AF (1982) Pollination ecology of the spring wildflower community in the deciduous forests of Piedmont North Carolina. Dissertation, Duke University

  • Naranjo SE, Ellsworth PC, Frisvold GB (2015) Economic value of biological control in integrated pest management of managed plant systems. Annu Rev Entomol 60:621–645

    Article  CAS  PubMed  Google Scholar 

  • Olesen JM, Eskildsen LI, Venkatasamy S (2002) Invasion of pollination networks on oceanic islands: importance of invader complexes and endemic super generalists. Divers Distrib 8:181–192

    Article  Google Scholar 

  • Olesen JM, Bascompte J, Dupont YL et al (2011) Missing and forbidden links in mutualistic networks. Proc R Soc B 278:725–732

    Article  PubMed  Google Scholar 

  • Ollerton J, Johnson SD, Cranmer L, Kellie S (2003) The pollination ecology of an assemblage of grassland asclepiads in South Africa. Ann Bot-London 92:807–834

    Article  Google Scholar 

  • Patt JM, Hamilton GC, Lashomb JH (1997) Foraging success of parasitoid wasps on flowers: interplay of insect morphology, floral architecture and searching behavior. Entomol Exp Appl 83:21–30

    Article  Google Scholar 

  • Pimentel D, Wilson C, McCullum C, Huang R, Dwen P et al (1997) Economic and environmental benefits of biodiversity. Bioscience 47:747–757

    Article  Google Scholar 

  • R Core Team (2016). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  • Ramirez N, Brito Y (1992) Pollination biology in a palm swamp community in the Venezuelan central plains. Bot J Linn Soc 110:277–302

    Article  Google Scholar 

  • Robertson C (1929) Flowers and insects: lists of visitors of four hundred and fifty-three flowers. Science Press Printing Company, Lancaster

    Google Scholar 

  • Russell M (2015) A meta-analysis of physiological and behavioral responses of parasitoid wasps to flowers of individual plant species. Biol Control 82:96–103

    Article  Google Scholar 

  • Santos GMM, Aguiar CML, Mello MAR (2010) Flower-visiting guild associated with the Caatinga flora: trophic interaction networks formed by social bees and social wasps with plants. Apidologie 41:466–475

    Article  Google Scholar 

  • Schemske DW, Willson MF, Melampy MN, Miller LJ, Verner L, Schemske KM, Best LB (1978) Flowering ecology of some spring woodland herbs. Ecology 59:351–366

    Article  Google Scholar 

  • Small E (1976) Insect pollinators of the Mer Bleue peat bog of Ottawa. Can Field Nat 90:22–28

    Google Scholar 

  • Sobhy IS, Baets D, Goelen T, Herrera-Malaver B, Bosmans L, Van den Ende W, Verstrepen KJ, Wäckers F, Jacquemyn H, Lievens B (2018) Sweet scents: nectar specialist yeasts enhance nectar attraction of a generalist aphid parasitoid without affecting survival. Front Plant Sci. https://doi.org/10.3389/fpls.2018.01009

    Article  PubMed  PubMed Central  Google Scholar 

  • Thébault E, Fontaine C (2010) Stability of ecological communities and the architecture of mutualistic and trophic networks. Science 329:853–856

    Article  CAS  PubMed  Google Scholar 

  • Tompkins JML, Wratten SD, Wäckers FL (2010) Nectar to improve parasitoid fitness in biological control: does the sucrose:hexose ratio matter? Basic Appl Ecol 11:264–271

    Article  Google Scholar 

  • Tooker JF, Hanks LM (2000) Flowering plant hosts of adult hymenopteran parasitoids of central Illinois. Ann Entomol Soc Am 93:580–588

    Article  Google Scholar 

  • Tooker JF, Hauser M, Hanks LM (2006) Floral host plants of Syrphidae and Tachinidae (Diptera) of central Illinois. Ann Entomol Soc Am 99:96–112

    Article  Google Scholar 

  • Tylianakis JM, Romo C (2010) Natural enemy diversity and biological control: making sense of the context-dependency. Basic Appl Ecol 11:657–668

    Article  Google Scholar 

  • Tylianakis JM, Didham RK, Wratten SD (2004) Increased fitness of aphid parasitoids receiving resource subsidies. Ecology 85:658–666

    Article  Google Scholar 

  • Tylianakis JM, Laliberté E, Nielsen A, Bascompte J (2010) Conservation of species interaction networks. Biol Conserv 143:2270–2279

    Article  Google Scholar 

  • Varassin IG, Sazima M (2012) Spatial heterogeneity and the distribution of bromeliad pollinators in the Atlantic Forest. Acta Oecol 43:104–112

    Article  Google Scholar 

  • Vazquez DP, Aizen MA (2003) Null model analyses of specialization in plant-pollinator interactions. Ecology 84:2493–2501

    Article  Google Scholar 

  • Vázquez DP, Simberloff D (2002) Ecological specialization and susceptibility to disturbance: conjectures and refutations. Am Nat 159:606–623

    Article  PubMed  Google Scholar 

  • Vizentin-Bugoni J, Maruyama PK, Debastiani VJ, Duarte LS, Dalsgaard B, Sazima M (2016) Influences of sampling effort on detected patterns and structuring processes of a Neotropical plant-hummingbird network. J Anim Ecol 85:262–272

    Article  PubMed  Google Scholar 

  • Wäckers FL (1999) Gustatory response by the hymenopteran parasitoid Cotesia glomerata to a range of nectar and honeydew sugars. J Chem Ecol 25:2863–2877

    Article  Google Scholar 

  • Wäckers FL, van Rijn PCJ (2012) Pick and mix: selecting flowering plants to meet the requirements of target biological control insects. In: Gurr GM, Wratten SD, Snyder WE (eds) Biodiversity and insect pests: key issues for sustainable management. John Wiley & Sons, Ltd, Chichester, pp 139–165

    Chapter  Google Scholar 

  • Winkler K, Wäckers FL, Kaufman LV et al (2009) Nectar exploitation by herbivores and their parasitoids is a function of flower species and relative humidity. Biol Control 50:299–306

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Jay Rosenheim, Marshall McMunn, Moria Robinson, Eric LoPresti, and Michael Culshaw-Mauer for helpful feedback on the manuscript, as well as Nicholas Fabina, Jochen Fründ, and Neal Williams for feedback on networks metrics. Reviews from Joe Patt and two anonymous reviewers greatly improved the manuscript. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1148897 and Doctoral Dissertation Improvement Grant No. DEB-1501620. LR was supported by a Marie Curie Individual Fellowship (FOMN 705287) and NSF #DMS-1313115. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the USDA. USDA is an equal opportunity provider and employer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ash T. Zemenick.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Miriama Malcicka.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 61 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zemenick, A.T., Kula, R.R., Russo, L. et al. A network approach reveals parasitoid wasps to be generalized nectar foragers. Arthropod-Plant Interactions 13, 239–251 (2019). https://doi.org/10.1007/s11829-018-9642-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11829-018-9642-9

Keywords

Navigation