Skip to main content
Log in

MET-IDEA version 2.06; improved efficiency and additional functions for mass spectrometry-based metabolomics data processing

  • Software Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Metabolomics Ion-based Data Extraction Algorithm (MET-IDEA) is a computer program for processing large-scale metabolomics data. MET-IDEA utilizes network Common Data Form (netCDF) data files available from a diversity of chromatographically coupled mass spectrometry (MS) systems, utilizes the sensitivity and selectivity associated with selected ion quantification, and greatly reduces the time and effort necessary to obtain large-scale organized data. This article reports on recent improvements to MET-IDEA which include new visualization of peak integrations, display of mass spectra associated with integrated peaks, and optional manual peak integration. The computational performance of MET-IDEA has also been improved to avoid memory overflow during the processing of large data sets and the software made compatible with 64 bit CPUs and operating systems. These new functions improve the performance of MET-IDEA, and they allow users to visualize peak integrations and curate the results through manual integration if desired. The improved version of MET-IDEA better facilitates the quantitative analysis of complex MS-based metabolomics data. MET-IDEA is freely available for academic and non commercial use at (http://bioinfo.noble.org/gateway/index.php?option=com_wrapper&Itemid=57). Commercial use is available via licensing agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Baran, R., Kochi, H., Saito, N., Suematsu, M., Soga, T., Nishioka, T., et al. (2006). MathDAMP: A package for differential analysis of metabolite profiles. BMC Bioinformatics, 7(530), doi:10.1186/1471-2105-7-530.

  • Benkeblia, N., Shinano, T., & Osaki, M. (2007). Metabolite profiling and assessment of metabolome compartmentation of soybean leaves using non-aqueous fractionation and GC–MS analysis. Metabolomics, 3(3), 297–305.

    Article  CAS  Google Scholar 

  • Brechenmacher, L., Lei, Z., Libault, M., Findley, S., Sugawara, M., Sadowsky, M. J., et al. (2010). Soybean metabolites regulated in root hairs in response to the symbiotic bacterium Bradyrhizobium japonicum. Plant Physiology, 153(4), 1808–1822. doi:10.1104/pp.110.157800.

    Article  PubMed  CAS  Google Scholar 

  • Broeckling, C. D., Reddy, I. R., Duran, A. L., Zhao, X. J., & Sumner, L. W. (2006). MET-IDEA: data extraction tool for mass spectrometry-based metabolomics. Analytical Chemistry, 78(13), 4334–4341. doi:10.1021/ac0521596.

    Article  PubMed  CAS  Google Scholar 

  • Broeckling, C. D., Broz, A. K., Bergelson, J., Manter, D. K., & Vivanco, J. M. (2008). Root exudates regulate soil fungal community composition and diversity. Applied and Environmental Microbiology, 74(3), 738–744. doi:10.1128/aem.02188-07.

    Article  PubMed  CAS  Google Scholar 

  • Dolan, J. W. (2009). Integration problems. LCGC North America, 27(10), 892–899.

    CAS  Google Scholar 

  • Duran, A. L., Yang, J., Wang, L. J., & Sumner, L. W. (2003). Metabolomics spectral formatting, alignment and conversion tools (MSFACTs). Bioinformatics, 19(17), 2283–2293. doi:10.1093/bioinformatics/btg315.

    Article  PubMed  CAS  Google Scholar 

  • Farag, M. A. (2008). Headspace analysis of volatile compounds in leaves from the Juglandaceae (Walnut) family. Journal of Essential Oil Research, 20(4), 323–327.

    Article  CAS  Google Scholar 

  • Farag, M. A. (2009). Chemical composition and biological activities of Asimina triloba leaf essential oil. Pharmaceutical Biology, 47(10), 982–986. doi:10.1080/13880200902967995.

    Article  CAS  Google Scholar 

  • Farag, M. A., Ryu, C. M., Sumner, L. W., & Pare, P. W. (2006). GC–MS SPME profiling of rhizobacterial volatiles reveals prospective inducers of growth promotion and induced systemic resistance in plants. Phytochemistry, 67(20), 2262–2268. doi:10.1016/j.phytochem.2006.07.021.

    Article  PubMed  CAS  Google Scholar 

  • Farag, M. A., Huhman, D. V., Dixon, R. A., & Sumner, L. W. (2008). Metabolomics reveals novel pathways and differential mechanistic and elicitor-specific responses in phenylpropanoid and isoflavonoid biosynthesis in Medicago truncatula cell cultures. Plant Physiology, 146(2), 387–402. doi:10.1104/pp.107.108431.

    Article  PubMed  CAS  Google Scholar 

  • Farag, M. A., Deavours, B. E., de Fatima, A., Naoumkina, M., Dixon, R. A., & Sumner, L. W. (2009). Integrated metabolite and transcript profiling identify a biosynthetic mechanism for hispidol in Medicago truncatula cell cultures. Plant Physiology, 151(3), 1096–1113. doi:10.1104/pp.109.141481.

    Article  PubMed  CAS  Google Scholar 

  • FDA. (2001). Guidance for industry: Bioanalytical method validation. Rockville, MD: FDA, pp. 1–25.

  • Fiehn, O., Wohlgemuth, G., Scholz, M. (2005). Setup and annotation of metabolomic experiments by integrating biological and mass spectrometric metadata. In B. Ludascher, L. Raschid (Eds.), Data Integration in the Life Sciences, Proceedings (vol. 3615, pp. 224–239, Lecture Notes in Computer Science). Berlin: Springer-Verlag.

  • Florida_DEP. (2011). CM-018-1.7 Laboratory policy regarding manual chromatographic peak integration. pp. 1–5. http://www.dep.state.fl.us/labs/cgi-bin/sop/sop1.asp?sect=CHEMISTRY.

  • Hamzehzarghani, H., Paranidharan, V., Abu-Nada, Y., Kushalappa, A. C., Mamer, O., & Somers, D. (2008). Metabolic profiling to discriminate wheat near isogenic lines, with quantitative trait loci at chromosome 2DL, varying in resistance to Fusarium head blight. Canadian Journal of Plant Science, 88(4), 789–797.

    Article  Google Scholar 

  • Hiller, K., Hangebrauk, J., Jager, C., Spura, J., Schreiber, K., & Schomburg, D. (2009). MetaboliteDetector: Comprehensive analysis tool for targeted and nontargeted GC/MS based metabolome analysis. Analytical Chemistry, 81(9), 3429–3439. doi:10.1021/ac802689c.

    Article  PubMed  CAS  Google Scholar 

  • Katajamaa, M., Miettinen, J., & Oresic, M. (2006). MZmine: toolbox for processing and visualization of mass spectrometry based molecular profile data. Bioinformatics, 22(5), 634–636. doi:10.1093/bioinformatics/btk039.

    Article  PubMed  CAS  Google Scholar 

  • Kopka, J., Schauer, N., Krueger, S., Birkemeyer, C., Usadel, B., Bergmuller, E., et al. (2005). GMD@CSB.DB: the Golm metabolome database. Bioinformatics, 21(8), 1635–1638. doi:10.1093/bioinformatics/bti236.

    Article  PubMed  CAS  Google Scholar 

  • Lisec, J., Schauer, N., Kopka, J., Willmitzer, L., & Fernie, A. R. (2006). Gas chromatography mass spectrometry-based metabolite profiling in plants. Nature Protocols, 1(1), 387–396. doi:10.1038/nprot.2006.59.

    Article  PubMed  CAS  Google Scholar 

  • Lommen, A. (2009). MetAlign: interface-driven, versatile metabolomics tool for hyphenated full-scan mass spectrometry data preprocessing. Analytical Chemistry, 81(8), 3079–3086. doi:10.1021/ac900036d.

    Article  PubMed  CAS  Google Scholar 

  • Luedemann, A., Strassburg, K., Erban, A., & Kopka, J. (2008). TagFinder for the quantitative analysis of gas chromatography–mass spectrometry (GC–MS)-based metabolite profiling experiments. Bioinformatics, 24(5), 732–737. doi:10.1093/bioinformatics/btn023.

    Article  PubMed  CAS  Google Scholar 

  • Naoumkina, M., Vaghchhipawala, S., Tang, Y. H., Ben, Y. X., Powell, R. J., & Dixon, R. A. (2008). Metabolic and genetic perturbations accompany the modification of galactomannan in seeds of Medicago truncatula expressing mannan synthase from guar (Cyamopsis tetragonoloba L.). Plant Biotechnology Journal, 6(6), 619–631. doi:10.1111/j.1467-7652.2008.00345.x.

    Article  PubMed  CAS  Google Scholar 

  • Smith, C. A., Want, E. J., O’Maille, G., Abagyan, R., & Siuzdak, G. (2006). XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Analytical Chemistry, 78(3), 779–787. doi:10.1021/ac051437y.

    Article  PubMed  CAS  Google Scholar 

  • Xu, P., Chen, F., Mannas, J. P., Feldman, T., Sumner, L. W., & Roossinck, M. J. (2008). Virus infection improves drought tolerance. New Phytologist, 180(4), 911–921. doi:10.1111/j.1469-8137.2008.02627.x.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lloyd W. Sumner.

Additional information

Z. Lei and H. Li contributed equally to the work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lei, Z., Li, H., Chang, J. et al. MET-IDEA version 2.06; improved efficiency and additional functions for mass spectrometry-based metabolomics data processing. Metabolomics 8 (Suppl 1), 105–110 (2012). https://doi.org/10.1007/s11306-012-0397-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-012-0397-5

Keywords

Navigation